Физиология ссс. Физиология кровообращения

Зависимость электрической и нагнетательной функции сердца от физических и химических факторов.

Различные механизмы и физические факторы ПП ПД Скорость проведения Сила сокращения
Повышение частоты сокращения сердца + Лестница
Снижение частоты сокращений сердца
Повышение температуры +
Понижение температуры +
Ацидоз
Гипоксемия
Повышение К + (+)→(−)
Понижение К +
Повышение Са + - +
Понижение Са + -
НА (А) + + (А/Вуз) +
АХ + -(А/Вуз) -

Обозначения: 0 – отсутствие влияния, «+» - усиление,«−» - торможение

(по Р.Шмидту, Г. Тевсу, 1983 г., Физиология человека, т.3)

ОСНОВНЫЕ ПРИНЦИПЫ ГЕМОДИНАМИКИ»

1. Функциональная классификация кровеносных и лимфатических сосудов (структурно-функциональная характеристика сосудистой системы.

2. Основные законы гемодинамики.

3. Кровяное давление, его виды (систолическое, диастолическое, пульсовое, среднее, центральное и периферическое, артериальное и венозное). Факторы, определяющие кровяное давление.

4. Методы измерения кровяного давления в эксперименте и в клинике (прямой, Н.С. Короткова, Рива-Роччи, артериальная осциллография, измерение венозного давления по Вельдману).


Сердечно-сосудистая система состоит из сердца и сосудов – артерий, капилляров, вен. Сосудистая система представляет собой систему трубок, по которым через посредство циркулирующих в них жидкостей (кровь и лимфа), совершается доставка к клеткам и тканям организма необходимых для них питательных веществ, а также происходит удаление продуктов жизнедеятельности клеточных элементов и перенесение этих продуктов к экскреторным органам (почкам).

По характеру циркулирующей жидкости сосудистую систему человека можно разделить на два отдела: 1) кровеносную систему – систему трубок, по которым циркулирует кровь (артерии, вены, отделы микроциркуляторного русла и сердце); 2) лимфатическую систему – систему трубок, по которым движется бесцветная жидкость – лимфа. В артериях кровь течет от сердца на периферию, к органам и тканям, в венах – к сердцу. Движение жидкости в лимфатических сосудах происходит так же, как и в венах – в направлении от тканей – к центру. Однако: 1) растворенные вещества всасываются главным образом кровеносными сосудами, твердые – лимфатическими; 2) всасывание через кровь происходит значительно быстрее. В клинике всю систему сосудов называют сердечно-сосудистой, в которой выделяют сердце и сосуды.



Сосудистая система.

Артерии – кровеносные сосуды, идущие от сердца к органам и несущие к ним кровь (aer – воздух, tereo – содержу; на трупах артерии пусты, отчего в старину их считали воздухоносными путями). Стенка артерий состоит из трёх оболочек. Внутренняя оболочка выстлана со стороны просвета сосуда эндотелием , под которым лежат субэндотелиальный слой и внутренняя эластическая мембрана . Средняя оболочка построена из гладкомышечных волокон, чередующихся с эластическими волокнами. Наружная оболочка содержит соединительнотканные волокна. Эластические элементы артериальной стенки образуют единый эластический каскад, работающий как пружина и обуславливающий эластичность артерий.

По мере удаления от сердца артерии делятся на ветви и становятся всё мельче и мельче, происходит и их функциональная дифференцировка.

Артерии, ближайшие к сердцу – аорта и ее крупные ветви – выполняют функцию проведения крови. В их стенке относительно больше развиты структуры механического характера, т.е. эластические волокна, так как их стенка постоянно противодействует растяжению массой крови, которая выбрасывается сердечным толчком – это артерии эластического типа . В них движение крови обусловлено кинетической энергией сердечного выброса.

Средние и мелкие артерии – артерии мышечного типа , что связано с необходимостью собственного сокращения сосудистой стенки, так как в этих сосудах инерция сосудистого толчка ослабевает и мышечное сокращение их стенки необходимо для дальнейшего продвижения крови.

Последние разветвления артерий становятся тонкими и мелкими – это артериолы. Они отличаются от артерий тем, что стенка артериолы имеет лишь один слой мышечных клеток, поэтому они относятся к резистивным артериям, активно участвующим в регуляции периферического сопротивления и, следовательно, в регуляции артериального давления.

Артериолы продолжаются в капилляры через стадию прекапилляров . От прекапилляров отходят капилляры.

Капилляры – это тончайшие сосуды, в которых происходит обменная функция. В связи с этим их стенка состоит из одного слоя плоских эндотелиальных клеток, проницаемых для растворенных в жидкости веществ и газов. Капилляры широко анастамозируют между собой (капиллярные сети), переходят в посткапилляры (построенные также, как и прекапилляры). Посткапилляр продолжается в венулу.

Венулы сопровождают артериолы, образуют тонкие начальные отрезки венозного русла, составляющие корни вен и переходящие в вены.

Вены – (лат. vena, греч phlebos) несут кровь в противоположном по отношению к артериям направлении, от органов – к сердцу. Стенки имеют общий план строения с артериями, но значительно тоньше и в них меньше эластической и мышечной ткани, благодаря чему пустые вены спадаются, просвет же артерий – нет. Вены, сливаясь друг с другом, образуют крупные венозные стволы – вены, впадающие в сердце. Вены образуют между собой венозные сплетения.

Движение крови по венам осуществляется в результате действия следующих факторов.

1) Присасывающее действие сердца и грудной полости (в ней во время вдоха создается отрицательное давление).

2) Благодаря сокращению скелетной и висцераьной мускулатуры.

3) Сокращение мышечной оболочки вен, которая в венах нижней половины тела, где условия для венозного оттока сложнее, развита сильнее, чем в венах верхней части тела.

4) Обратному оттоку венозной крови препятствуют особые клапаны вен – это складка эндотелия, содержащая слой соединительной ткани. Они обращены свободным краем в сторону сердца и поэтому препятствуют току крови в этом направлении, но удерживают ее от возвращения обратно. Артерии и вены обычно идут вместе, причем мелкие и средние артерии сопровождаются двумя венами, а крупные – одной.

СЕРДЕЧНО-СОСУДИСТАЯ СИСТЕМА человека состоит из двух последовательно соединенных отделов:

1. Большой (системный) круг кровообращения начинается с левого желудочка, выбрасывающего кровь в аорту. От аорты отходят многочисленные артерии, и в результате кровоток распределяется по нескольким параллельным регионарным сосудистым сетям (регионарное, или органное кровообращение): коронарное, мозговое, легочное, почечное, печеночное и т.д. Артерии ветвятся дихотомически , и поэтому по мере уменьшения диаметра отдельных сосудов общее их число возрастает . В результате образуется капиллярная сеть, общая площадь поверхности которой – около 1000 м 2 . При слиянии капилляров образуются венулы (см. выше) и т.д. Такому общему правилу строения венозного русла большого круга кровообращения не подчиняется кровообращение в некоторых органах брюшной полости: кровь, оттекающая от капиллярных сетей брыжеечных и селезеночных сосудов (т.е. от кишечника и селезенки), в печени происходит еще через одну систему капилляров, и лишь затем поступает к сердцу. Это русло называется портальным кровообращением.

2. Малый круг кровообращения начинается с правого желудочка, выбрасывающего кровь в легочной ствол. Затем кровь поступает в сосудистую систему легких, имеющих общую схему строения, что и большой круг кровообращения. Кровь по четырем крупным легочным венам оттекает к левому предсердию, а затем поступает в левый желудочек. В результате оба круга кровообращения замыкаются.

Историческая справка. Открытие замкнутой кровеносной системы принадлежит английскому врачу Уильяму Гарвею (1578-1657). В своем знаменитом труде «О движении сердца и крови у животных», опубликованном в 1628 г., он с безупречной логикой опроверг господствовавшую доктрину своего времени, принадлежащую Галену, который считал, что кровь образуется из пищевых веществ в печени, притекает к сердцу по полой вене и затем по венам поступает к органам и используется ими.

Существует принципиальное функциональное различие между обоими кругами кровообращения. Оно заключается в том, что объем крови, выбрасываемый в большой круг кровообращения, длжен быть распределен по всем органам и тканям; потребности же разных органов в кровоснабжении различны даже для состояния покоя и постоянно изменяются в зависимости от деятельности органов. Все эти изменения контролируются, и кровоснабжение органов большого круга кровообращения имеет сложные механизмы регуляции. Малый круг кровообращения: сосуды легких (через них проходит то же количество крови) предъявляют к работе сердца постоянные требования и выполняют в основном функцию газообмена и теплоотдачи. Поэтому для регуляции легочного кровотока требуется менее сложная система регуляции.


ФУНКЦИОНАЛЬНАЯ ДИФФЕРЕНЦИРОВКА СОСУДИСТОГО РУСЛА И ОСОБЕННОСТИ ГЕМОДИНАМИКИ.

Все сосуды в зависимости от выполняемой ими функции можно подразделить на шесть функциональных групп:

1) амортизирующие сосуды,

2) резистивные сосуды,

3) сосуды-сфинктеры,

4) обменные сосуды,

5) емкостные сосуды,

6) шунтирующие сосуды.

Амортизирующие сосуды: артерии эластического типа с относительно большим содержанием эластических волокон. Это – аорта, легочная артерия, прилегающие к ним участки артерий. Выраженные эластические свойства таких сосудов обуславливают амортизирующий эффект «компрессионной камеры». Этот эффект заключается в амортизации (сглаживании) периодических систолических волн кровотока.

Резистивные сосуды. К сосудам этого типа относятся концевые артерии, артериолы, в меньшей степени – капилляры и венулы. Артерии концевые и артериолы – это прекапиллярные сосуды, обладающие относительно малым просветом и толстыми стенками, с развитой гладкомышечной мускулатурой, оказывают наибольшее сопротивление кровотоку: изменение степени сокращения мышечных стенок этих сосудов сопровождается отчетливыми изменениями их диаметра и, следовательно, общей площади поперечного сечения. Это обстоятельство является основным в механизме регуляции объемной скорости кровотока в различных областях сосудистого русла, а также перераспределения сердечного выброса по разным органам. Описанные сосуды являются прекапиллярными сосудами сопротивления. Посткапиллярные сосуды сопротивления – это венулы и, в меньшей степени – вены. Соотношение между прекапиллярным и посткапиллярным сопротивлением влияет на величину гидростатического давления в капиллярах – и, следовательно, на скорость фильтрации.

Сосуды-сфинктеры – это последние отделы прекапиллярных артериол. От сужения и расширения сфинктеров зависит число функционирующих капилляров, т.е. площадь обменных поверхностей.

Обменные сосуды – капилляры. В них происходит диффузия и фильтрация. Капилляры не способны к сокращениям: их просвет изменяется пассивно вслед за колебаниями давления в пре- и посткапиллярах (резистивных сосудов).

Емкостные сосуды – это главным образом вены. Благодаря своей высокой растяжимости вены способны вмещать или выбрасывать большие объемы крови без существенных изменение каких-либо параметров кровотока. В связи с этим они могут играть роль как депо крови . В замкнутой сосудистой системе изменения емкости какого-либо отдела обязательно сопровождается перераспределением объема крови. Поэтому изменение емкости вен, наступающие при сокращении гладких мышц, влияют на распределение крови во всей кровеносной системе и тем самым – прямо или косвенно – на общие параметры кровообращения . Кроме того, некоторые вены (поверхностные) при низком внутрисосудистом давлении уплощены (т.е. имеют овальный просвет), и поэтому они могут вмещать некоторый дополнительный объем, не растягиваясь, а лишь приобретая цилиндрическую форму. Это главный фактор, обуславливающий высокую эффективную растяжимость вен. Основные депо крови : 1) вены печени, 2) крупные вены чревной области, 3) вены подсосочкового сплетения кожи (общий объем этих вен может увеличиваться на 1 л по сравнению с минимальным), 4) легочные вены, соединенные с системным кровообращением параллельно, обеспечивающие кратковременное депонирование или выброс достаточно больших количеств крови.

У человека , в отличие от других видов животных, нет истинного депо , в котором кровь могла бы задержаться в специальных образованиях и по мере необходимости выбрасываться (как, например, у собаки, селезенка).

ФИЗИЧЕСКИЕ ОСНОВЫ ГЕМОДИНАМИКИ.

Основными показателями гидродинамики являются:

1. Объемная скорость движения жидкости – Q.

2. Давление в сосудистой системе – Р.

3. Гидродинамическое сопротивление – R.

Соотношение между этими величинами описывается уравнением:

Т.е. количество жидкости Q, протекающее через любую трубу, прямо пропорционально разности давлений в начале (Р 1) и в конце (Р 2) трубы и обратно пропорционально сопротивлению (R) току жидкости.

ОСНОВНЫЕ ЗАКОНЫ ГЕМОДИНАМИКИ

Наука, изучающая движение крови в сосудах, получила название гемодинамики. Она является частью гидродинамики, изучающей движение жидкостей.

Периферическое сопротивление R сосудистой системы передвижению крови в ней слагается из множества факторов каждого сосуда. Отсюда уместна формула Пуазеля:

где l – длина сосуда, η – вязкость протекающей в ней жидкости, r – радиус сосуда.

Однако сосудистая система состоит из множества сосудов, соединенных и последовательно, и параллельно, отсюда суммарное сопротивление можно вычислить с учетом этих факторов:

При параллельном ветвлении сосудов (капиллярное русло)

При последовательном соединении сосудов (артериальном и венозном)

Поэтому R суммарное всегда меньше в капиллярном русле, чем в артериальном или венозном. С другой стороны, вязкость крови тоже величина непостоянная. Например, если кровь протекает через сосуды, диаметром менее 1 мм, вязкость крови уменьшается. Чем меньше диаметр сосуда, тем меньше вязкость протекающей крови. Это связано с тем, что в крови наряду с эритроцитами и другими форменными элементами есть плазма. Пристеночный слой представляет собой плазму, вязкость которой намного меньше вязкости цельной крови. Чем тоньше сосуд, тем большую часть его поперечного сечения занимает слой с минимальной вязкостью, что уменьшает общую величину вязкости крови. Кроме этого, в норме открыта только часть капиллярного русла, остальные капилляры являются резервными и открываются по мере усиления обмена веществ в тканях.


Распределение периферического сопротивления.

Сопротивление в аорте, больших артериях и относительно длинных артериальных ответвлениях составляет лишь около 19% от общего сосудистого сопротивления. На долю же конечных артерий и артериол приходится почти 50 % этого сопротивления. Таким образом, почти половина периферического сопротивления приходится на сосуды, длиной порядка всего насколько миллиметров. Это колоссальное сопротивление связано с тем, что диаметр концевых артерий и артериол относительно мал, и это уменьшение просвета полностью не компенсируется ростом числа параллельных сосудов. Сопротивление в капиллярном русле – 25 %, в венозном русле и в венулах – 4 % и во всех остальных венозных сосудах – 2 %.

Итак, артериолы играют двоякую роль: во-первых, участвуют в поддержании периферического сопротивления и через него в формировании необходимого системного артериального давления; во-вторых, за счет изменения сопротивления обеспечивают перераспределение крови в организме – в работающем органе сопротивление артериол снижается, приток крови к органу увеличивается, но величина общего периферического давления остается постоянной за счет сужения артериол других сосудистых областей. Это обеспечивает стабильный уровень системного артериального давления.

Линейная скорость кровотока выражается в см/с. Её можно рассчитать, зная количество крови, изгнанное сердцем в минуту (объемная скорость кровотока) и прощадь сечения кровеносного сосуда.

Линейная скорость V отражает скорость продвижения частиц крови вдоль сосуда и равна объемной скорости, деленной на суммарную площадь сечения сосудистого русла:

Линейная скорость, вычисленная по этой формуле, есть средняя скорость. В действительности же линейная скорость величина непостоянная, так как отражает движение частиц крови в центре потока вдоль сосудистой оси и у сосудистой стенки (ламинарное движение – слоистое: в центре движутся частицы – форменные элементы крови, а у стенки – слой плазмы). В центре сосуда скорость максимальная, а около стенки сосуда она минимальна в связи с тем, что здесь особенно велико трение частиц крови о стенку.

Изменение линейной скорости тока крови в разных частях сосудистой системы.

Самое узкое место в сосудистой системе – аорта. Её диаметр составляет 4 см 2 (имеется в виду суммарный просвет сосудов), здесь самое минимальное периферическое сопротивление и самая большая линейная скорость – 50 см/с .

По мере расширения русла скорость снижается. В артериолах самое «неблагополучное» отношение длины и диаметра, поэтому здесь самое большое сопротивление и наибольшее падение скорости. Но за счет этого при входе в капиллярное русло кровь имеет наименьшую скорость, необходимую для обменных процессов (0,3-0,5 мм/с) . Этому способствует и фактор расширения (максимального) сосудистого русла на уровне капилляров (общая площадь их сечения – 3200 см 2). Суммарный просвет сосудистого русла является определяющим фактором в формировании скорости системного кровообращения .

Кровь оттекающая от органов, поступает через венулы в вены. Происходит укрупнение сосудов, параллельно суммарный просвет сосудов уменьшается. Поэтому линейная скорость кровотока в венах опять увеличивается (по сравнению с капиллярами). Линейная скорость – 10-15 см/с, а площадь поперечного сечения этой части сосудистого русла – 6-8 см 2 . В полых венах скорость кровотока – 20 см/с.

Таким образом , в аорте создается наибольшая линейная скорость движения артериальной крови к тканям, где при минимальной линейной скорости в микроциркуляторном русле происходят все обменные процессы, после чего по венам с увеличивающейся линейной скоростью уже венозная кровь поступает через «правое сердце» в малый круг кровообращения, где происходят процессы газообмена и оксигенации крови.

Механизм изменения линейной скорости кровотока.

Объем крови, протекающий в 1 мин через аорту и полые вены и через легочную артерию или легочные вены, одинаков. Отток крови от сердца соответствует ее притоку. Из этого следует, что объем крови, протекающий в 1 мин через всю артериальную систему или все артериолы, через все капилляры или всю венозную систему как большого, так и малого круга кровообращения, одинаков. При постоянном объеме крови, протекающей через любое общее сечение сосудистой системы, линейная скорость кровотока не может быть постоянной. Она зависит от общей ширины данного отдела сосудистого русла. Это следует из уравнения, выражающего соотношение линейной и объемной скорости: ЧЕМ БОЛЬШЕ ОБЩАЯ ПЛОЩАДЬ СЕЧЕНИЯ СОСУДОВ, ТЕМ МЕНЬШЕ ЛИНЕЙНАЯ СКОРОСТЬ КРОВОТОКА . В кровеносной системе самым узким местом является аорта. При разветвлении артерий, несмотря на то, что каждая ветвь сосуда ´уже той, от которой она произошла, наблюдается увеличение суммарного русла, так как сумма просветов артериальных ветвей больше просвета разветвившейся артерии. Наибольшее расширение русла отмечается в капиллярах большого круга кровообращения: сумма просветов всех капилляров примерно в 500-600 раз больше просвета аорты. Соответственно этому кровь в капиллярах движется в 500-600 раз медленнее, чем в аорте.

В венах линейная скорость кровотока снова возрастает, так как при слиянии вен друг с другом суммарный просвет кровяного русла суживается. В полых венах линейная скорость кровотока достигает половины скорости в аорте.

Влияние работы сердца на характер кровотока и его скорость.

В связи с тем, что кровь выбрасывается сердцем отдельными порциями

1. Кровоток в артериях имеет пульсирующий характер . Поэтому, линейная и объемная скорости непрерывно меняются: они максимальны в аорте и легочной артерии в момент систолы желудочков и уменьшаются во время диастолы.

2. В капиллярах и венах кровоток постоянен , т.е. линейная скорость его постоянна. В превращении пульсирующего кровотока в постоянный имеют значение свойства артериальной стенки: в сердечно-сосудистой системе часть кинетической энергии, развиваемой сердцем во время систолы, затрачивается на растяжение аорты и отходящих от нее крупных артерий. В результате в этих сосудах образуется эластическая, или компрессионная камера, в которую поступает значительный объем крови, растягивающий ее. При этом кинетическая энергия, развитая сердцем, переходит в энергию эластического напряжения артериальных стенок. Когда систола заканчивается, растянутые стенки артерий стремятся спадаться и проталкивают кровь в капилляры, поддерживая кровоток во время диастолы.

Методика исследования линейной и объемной скорости кротока.

1. Ультразвуковой метод исследования – к артерии на небольшом расстоянии друг от друга прикладывают две пьезоэлектрические пластинки, которые способны преобразовывать механические колебания в электрические и обратно. Оно преобразуется в ультразвуковые колебания, которые передаются с кровью на вторую пластинку, воспринимаются ею и преобразуются в высокочастотные колебания. Определив, как быстро распространяются ультразвуковые колебания по току крови от первой пластинки ко второй и против тока крови в обратном направлении, рассчитывают скорость кровотока: чем быстрее ток крови, тем быстрее будут распространяться ультразвуковые колебания в одном направлении и медленнее – в противоположном.

Окклюзионная плетизмография (окклюзия – закупорка, зажатие) – метод, позволяющий определить объемную скорость регионарного кровотока. Метока состоит в регистрации изменений объема органа или части тела, зависящих от их кровенаполнения, т.е. от разности между притоком крови по артериям и оттоком ее по венам. Во время плетизмографии конечность или ее часть помещают в герметически закрывающийся сосуд, соединенный с манометром для измерения малых колебаний давления. При изменении кровенаполнения конечности изменяется ее объем, что вызывает увеличение или уменьшение давления воздуха или воды в сосуде, в который помещают конечность: давление регистрируется манометром и записывается в виде кривой – плетизмограммы. Для определения объемной скорости кровотока в конечности на несколько секунд сжимают вены и прерывают венозный отток. Поскольку приток крови по артериям продолжается, а венозного оттока нет, увеличение объема конечности соответствует количеству притекающей крови.

Величина кровотока в органах на 100 г массы

К системе кровообращения относятся сердце и сосуды - кровеносные и лимфатические. Основное значение системы кровообращения состоит в снабжении кровью органов и тканей.

Сердце представляет собой биологический насос, благодаря работе которого кровь движется по замкнутой системе сосудов. В организме человека имеется 2 круга кровообращения.

Большой круг кровообращения начинается аортой, которая отходит от левого желудочка, и заканчивается сосудами, впадающими в правое предсердие. Аорта дает начало крупным, средним и мелким артериям. Артерии переходят в артериолы, которые заканчиваются капиллярами. Капилляры широкой сетью пронизывают все органы и ткани организма. В капиллярах кровь отдает тканям кислород и питательные вещества, а из них в кровь поступают продукты обмена веществ, в том числе и углекислый газ. Капилляры переходят в венулы, кровь из которых попадает в мелкие, средние и крупные вены. Кровь от верхней части туловища поступает в верхнюю полую вену, от нижней - в нижнюю полую вену. Обе эти вены впадают в правое предсердие, где заканчивается большой круг кровообращения.

Малый круг кровообращения (легочный) начинается легочным стволом, который отходит от правого желудочка и несет в легкие венозную кровь. Легочный ствол разветвляется на две ветви, идущие к левому и правому легкому. В легких легочные артерии делятся на более мелкие артерии, артериолы и капилляры. В капиллярах кровь отдает углекислый газ и обогащается кислородом. Легочные капилляры переходят в венулы, которые затем образуют вены. По четырем легочным венам артериальная кровь поступает в левое предсердие.

Сердце.

Сердце человека - полый мышечный орган. Сплошной вертикальной перегородкой сердце делится на левую и правую половины. Горизонтальная перегородка вместе с вертикальной делит сердце на четыре камеры. Верхние камеры - предсердия, нижние - желудочки.

Стенка сердца состоит из трех слоев. Внутренний слой представлен эндотелиальной оболочкой (эндокард , выстилает внутреннюю поверхность сердца). Средний слой (миокард ) состоит из поперечнополосатой мышцы. Наружная поверхность сердца покрыта серозной оболочкой (эпикард ), являющейся внутренним листком околосердечной сумки - перикарда. Перикард (сердечная сорочка) окружает сердце, как мешок, и обеспечивает его свободное движение.

Клапаны сердца. Левое предсердие от левого желудочка отделяет двустворчатый клапан . На границе между правым предсердием и правым желудочком находится трехстворчатый клапан . Клапан аорты отделяет ее от левого желудочка, а клапан легочного ствола отделяет его от правого желудочка.

При сокращении предсердий (систола ) кровь из них поступает в желудочки. При сокращении желудочков кровь с силой выбрасывается в аорту и легочный ствол. Расслабление (диастола ) предсердий и желудочков способствует наполнению полостей сердца кровью.

Значение клапанного аппарата. Во время диастолы предсердий предсердно-желудочковые клапаны открыты, кровь, поступающая из соответствующих сосудов, заполняет не только их полости, но и желудочки. Во время систолы предсердий желудочки полностью заполняются кровью. При этом исключается возврат крови в полые и легочные вены. Это связано с тем, что в первую очередь сокращается мускулатура предсердий, образующая устья вен. По мере наполнения полостей желудочков кровью створки предсердно-желудочковых клапанов плотно смыкаются и отделяют полость предсердий от желудочков. В результате сокращения сосочковых мышц желудочков в момент их систолы сухожильные нити створок предсердно-желудочковых клапанов натягиваются и не дают им вывернуться в сторону предсердий. К концу систолы желудочков давление в них становится больше давления в аорте и легочном стволе. Это способствует открытию полулунных клапанов аорты и легочного ствола , и кровь из желудочков поступает в соответствующие сосуды.

Таким образом, открытие и закрытие клапанов сердца связано с изменением величины давления в полостях сердца. Значение же клапанного аппарата состоит в том, что он обеспечивает движение крови в полостях сердца в одном направлении .

Основные физиологические свойства сердечной мышцы.

Возбудимость. Сердечная мышца менее возбудима, чем скелетная. Реакция сердечной мышцы не зависит от силы наносимых раздражений. Сердечная мышца максимально сокращается и на пороговое и на более сильное по величине раздражение.

Проводимость. Возбуждение по волокнам сердечной мышцы распространяется с меньшей скоростью, чем по волокнам скелетной мышцы. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8-1,0 м/с, по волокнам мышц желудочков - 0,8-0,9 м/с, по проводящей системе сердца - 2,0-4,2 м/с.

Сократимость. Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы предсердий, затем - сосочковые мышцы и субэндокардиальный слой мышц желудочков. В дальнейшем сокращение охватывает и внутренний слой желудочков, обеспечивая движение крови из полостей желудочков в аорту и легочный ствол.

К физиологическим особенностям сердечной мышцы относятся удлиненный рефрактерный период и автоматизм

Рефрактерный период. Сердце имеет значительно выраженный и удлиненный рефрактерный период. Он характеризуется резким снижением возбудимости ткани в период ее активности. Благодаря выраженному рефрактерному периоду, который длится дольше, чем период систолы (0,1-0,3с), сердечная мышца не способна к тетаническому (длительному) сокращению и совершает свою работу по типу одиночного мышечного сокращения.

Автоматизм. Вне организма при определенных условиях сердце способно сокращаться и расслабляться, сохраняя правильный ритм. Следовательно, причина сокращений изолированного сердца лежит в нем самом. Способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом, носит название автоматизма.

Проводящая система сердца.

В сердце различают рабочую мускулатуру, представленную поперечнополосатой мышцей, и атипическую, или специальную, ткань, в которой возникает и проводится возбуждение.

У человека атипическая ткань состоит из:

синусно-предсердного узла , располагающегося на задней стенке правого предсердия у места впадения верхней полой вены;

предсердно-желудочкового узла (атриовентрикулярный узел), находящегося в стенке правого предсердия вблизи перегородки между предсердиями и желудочками;

предсердно-желудочкового пучка (пучок Гиса), отходящего от предсердно-желудочкового узла одним стволом. Пучок Гиса, пройдя через перегородку между предсердиями и желудочками, делится на две ножки, идущие к правому и левому желудочкам. Заканчивается пучок Гиса в толще мышц волокнами Пуркинье.

Синусно-предсердный узел является ведущим в деятельности сердца (водитель ритма), в нем возникают импульсы, определяющие частоту и ритм сокращений сердца. В норме предсердно-желудочковый узел и пучок Гиса являются только передатчиками возбуждений из ведущего узла к сердечной мышце. Однако способность к автоматии присуща предсердно-желудочковому узлу и пучку Гиса, только выражается она в меньшей степени и проявляется лишь при патологии. Автоматизм предсердно-желудочкового соединения проявляется лишь в тех случаях, когда к нему не поступают импульсы от синусно-предсердного узла .

Атипическая ткань состоит из малодифференцированных мышечных волокон. К узлам атипической ткани подходят нервные волокна от блуждающих и симпатических нервов.

Сердечный цикл и его фазы.

В деятельности сердца наблюдаются две фазы: систола (сокращение) и диастола (расслабление). Систола предсердий слабее и короче систолы желудочков. В сердце человека она длится 0,1-0,16 с. Систола желудочков - 0,5-0,56 с. Общая пауза (одновременная диастола предсердий и желудочков) сердца длится 0,4 с. В течение этого периода сердце отдыхает. Весь сердечный цикл продолжается 0,8-0,86 с.

Систола предсердий обеспечивает поступление крови в желудочки. Затем предсердия переходят в фазу диастолы, которая продолжается в течение всей систолы желудочков. Во время диастолы предсердия заполняются кровью.

Показатели сердечной деятельности.

Ударный, или систолический, объем сердца - количество крови, выбрасываемое желудочком сердца в соответствующие сосуды при каждом сокращении. У взрослого здорового человека при относительном покое систолический объем каждого желудочка составляет приблизительно 70-80 мл . Таким образом, при сокращении желудочков в артериальную систему поступает 140-160 мл крови.

Минутный объем - количество крови, выбрасываемое желудочком сердца за 1 мин. Минутный объем сердца - это произведение величины ударного объема на частоту сердечных сокращений в 1 мин. В среднем минутный объем составляет 3-5 л/мин . Минутный объем сердца может увеличиваться за счет увеличения ударного объема и частоты сердечных сокращений.

Законы сердечной деятельности.

Закон Старлинга - закон сердечного волокна. Формулируется так: чем больше растянуто мышечное волокно, тем сильнее оно сокращается. Следовательно, сила сердечных сокращений зависит от исходной длины мышечных волокон перед началом их сокращений.

Рефлекс Бейнбриджа (закон сердечного ритма). Это висцеро-висцеральный рефлекс: увеличение частоты и силы сердечных сокращений при повышении давления в устьях полых вен. Проявление этого рефлекса связано с возбуждением механорецепторов, расположенных в правом предсердии в области впадения полых вен. Механорецепторы, представленные чувствительными нервными окончаниями блуждающих нервов, реагируют на повышение давления крови, возвращающейся к сердцу, например, при мышечной работе. Импульсы от механорецепторов по блуждающим нервам идут в продолговатый мозг к центру блуждающих нервов, в результате этого снижается активность центра блуждающих нервов и усиливаются воздействия симпатических нервов на деятельность сердца, что и обусловливает учащение сердечных сокращений.

Основные методы исследования сердечной деятельности. Врач судит о работе сердца по внешним проявлениям его деятельности, к которым относятся: верхушечный толчок, сердечные тоны и электрические явления, возникающие в работающем сердце.

Верхушечный толчок. Во время систолы желудочков верхушка сердца поднимается и надавливает на грудную клетку в области пятого межреберного промежутка. Во время систолы сердце становится очень плотным. Поэтому надавливание верхушки сердца на межреберный промежуток можно видеть (выбухание, выпячивание), особенно у худощавых субъектов. Верхушечный толчок можно прощупать (пальпировать) и тем самым определить его границы и силу. Сердечные тоны. Это звуковые явления, возникающие в работающем сердце. Различают два тона: I - систолический и II - диастолический.

В происхождении систолического тона принимают участие главным образом предсердно-желудочковые клапаны. Во время систолы желудочков эти клапаны закрываются и колебания их створок и прикрепленных к ним сухожильных нитей обусловливают появление I тона. Кроме того, в происхождении I тона принимают участие звуковые явления, которые возникают при сокращении мышц желудочков. По своим звуковым качествам первый тон протяжный и низкий. Диастолический тон возникает в начале диастолы желудочков, когда происходит закрытие полулунных заслонок клапанов аорты и легочного ствола. Колебание створок клапанов при этом является источником звуковых явлений. По звуковой характеристике II тон короткий и высокий. Тоны сердца можно определить в любом участке грудной клетки. Однако имеются места наилучшего их прослушивания: I тон лучше выражен в области верхушечного толчка и у основания мечевидного отростка грудины; II - во втором межреберье слева от грудины и справа от нее. Тоны сердца прослушиваются при помощи стетоскопа, фонендоскопа или непосредственно ухом.

Электрокардиограмма.

В работающем сердце создаются условия для возникновения электрического тока. Во время систолы предсердия становятся электроотрицательными по отношению к желудочкам, находящимся в это время в фазе диастолы. Таким образом, при работе сердца возникает разность потенциалов. Биопотенциалы сердца, записанные с помощью электрокардиографа, носят название электрокардиограммы.

Для регистрации биотоков сердца пользуются стандартными отведениями , для которых выбираются участки на поверхности тела, дающие наибольшую разность потенциалов. Применяют три классических стандартных отведения, при которых электроды укрепляют:I - на внутренней поверхности предплечий обеих рук;II - на правой руке и в области икроножной мышцы левой ноги; III - на левых конечностях. Используют также и грудные отведения.

Нормальная ЭКГ состоит из ряда зубцов и интервалов между ними. При анализе ЭКГ учитывают высоту, ширину, направление, форму зубцов, а также продолжительность зубцов и интервалов между ними, отражает скорость проведения импульсов в сердце. ЭКГ имеет три направленных вверх (положительных) зубца - Р, R,T и два отрицательных зубца, вершины которых обращены вниз, - Q и S.

Зубец Р - характеризует возникновение и распространение возбуждения в предсердиях.

Зубец Q - отражает возбуждение межжелудочковой перегородки

Зубец R - соответствует периоду охвата возбуждением обоих желудочков

Зубец S - характеризует завершение распространения возбуждения в желудочках.

Зубец Т - отражает процесс реполяризации в желудочках. Высота его характеризует состояние обменных процессов, происходящих в сердечной мышце .

Физиология сердечно - сосудистой системы

Выполняя одну из главных функций - транспортную - сердечно-сосудистая система обеспечивает ритмичное течение физиологических и биохимических процессов в организме человека. К тканям и органам по кровеносным сосудам доставляются все необходимые вещества (белки, углеводы, кислород, витамины, минеральные соли) и отводятся продукты обмена веществ и углекислый газ. Кроме того, с током крови по сосудам разносятся в органы и ткани, выработанные эндокринными железами гормональные вещества, которые являются специфическими регуляторами обменных процессов, антитела, необходимые для защитных реакций организма против инфекционных заболеваний. Таким образом, сосудистая система выполняет еще и регуляторную, и защитную функции. В содружестве с нервной и гуморальной системами сосудистая система играет важную роль в обеспечении целостности организма.

Сосудистая система делится на кровеносную и лимфатическую. Эти системы анатомически и функционально тесно связаны, дополняют одна другую, но между ними есть определенные различия. Кровь в организме движется по кровеносной системе. Кровеносная система состоит из центрального органа кровообращения - сердца, ритмические сокращения которого дают движение крови по сосудам.

Сосуды малого круга кровообращения

Малый круг кровообращения начинается в правом желудочке, из которого выходит легочный ствол, и заканчивается в левом предсердии, куда впадают легочные вены. Малый круг кровообращения еще называют легочным, он обеспечивает газообмен между кровью легочных капилляров и воздухом легочных альвеол. В его состав входят легочный ствол, правая и левая легочные артерии с их ветвями, сосуды легких, которые собираются в две правые и две левые легочные вены, впадая в левое предсердие.

Легочный ствол (truncus pulmonalis) берет начало от правого желудочка сердца, диаметр 30 мм, идет косо вверх, влево и на уровне IV грудного позвонка делится на правую и левую легочные артерии, которые направляются к соответствующему легкому.

Правая легочная артерия диаметром 21 мм идет вправо к воротам легкого, где делится на три долевые ветви, каждая из которых в свою очередь делится на сегментарные ветви.

Левая легочная артерия короче и тоньше правой, проходит от бифуркации легочного ствола к воротам левого легкого в поперечном направлении. На своем пути артерия перекрещивается с левым главным бронхом. В воротах соответственно двум долям легкого она делится на две ветви. Каждая из них распадается на сегментарные ветви: одна - в границах верхней доли, другая - базальная часть - своими ветвями обеспечивает кровью сегменты нижней доли левого легкого.

Легочные вены. Из капилляров легких начинаются вену-лы, которые сливаются в более крупные вены и образуют в каждом легком по две легочные вены: правую верхнюю и правую нижнюю легочные вены; левую верхнюю и левую нижнюю легочные вены.

Правая верхняя легочная вена собирает кровь от верхней и средней доли правого легкого, а правая нижняя - от нижней доли правого легкого. Общая базальная вена и верхняя вена нижней доли формируют правую нижнюю легочную вену.

Левая верхняя легочная вена собирает кровь из верхней доли левого легкого. Она имеет три ветви: верхушечнозаднюю, переднюю и язычковую.

Левая нижняя легочная вена выносит кровь из нижней доли левого легкого; она крупнее верхней, состоит из верхней вены и общей базальной вены.

Сосуды большого круга кровообращения

Большой круг кровообращения начинается в левом желудочке, откуда выходит аорта, и заканчивается в правом предсердии.

Основное назначение сосудов большого круга кровообращения - доставка к органам и тканям кислорода и пищевых веществ, гормонов. Обмен веществ между кровью и тканями органов происходит на уровне капилляров, выведение из органов продуктов обмена веществ - по венозной системе.

К кровеносным сосудам большого круга кровообращения относятся аорта с отходящими от нее артериями головы, шеи, туловища и конечностей, ветви этих артерий, мелкие сосуды органов, включая капилляры, мелкие и крупные вены, которые затем образуют верхнюю и нижнюю полые вены.

Аорта (aorta) - самый большой непарный артериальный сосуд тела человека. Она делится на восходящую часть, дугу аорты и нисходящую часть. Последняя в свою очередь делится на грудную и брюшную части.

Восходящая часть аорты начинается расширением - луковицей, выходит из левого желудочка сердца на уровне III межреберья слева, позади грудины идет вверх и на уровне II реберного хряща переходит в дугу аорты. Длина восходящей аорты составляет около 6 см. От нее отходят правая и левая венечные артерии, которые снабжают кровью сердце.

Дуга аорты начинается от II реберного хряща, поворачивает влево и назад к телу IV грудного позвонка, где проходит в нисходящую часть аорты. В этом месте находится небольшое сужение - перешеек аорты. От дуги аорты отходят крупные сосуды (плечеголовной ствол, левая общая сонная и левая подключичная артерии), которые обеспечивают кровью шею, голову, верхнюю часть туловища и верхние конечности.

Нисходящая часть аорты - наиболее длинная часть аорты, начинается от уровня IV грудного позвонка и идет к IV поясничному, где делится на правую и левую подвздошные артерии; это место называется бифуркацией аорты. В нисходящей части аорты различают грудную и брюшную аорту.

Физиологические особенности сердечной мышцы . К основным особенностям сердечной мышцы относятся автоматия, возбудимость, проводимость, сократимость, рефрактер-ность.

Автоматия сердца - способность к ритмическому сокращению миокарда под влиянием импульсов, которые появляются в самом органе.

В состав сердечной поперечнополосатой мышечной ткани входят типичные сократительные мышечные клетки - кардиомиоциты и атипические сердечные миоциты (пейсмекеры), формирующие проводящую систему сердца, которая обеспечивает автоматизм сердечных сокращений и координацию сократительной функции миокарда предсердий и желудочков сердца. Первый синусно-предсердный узел проводящей системы является главным центром автоматизма сердца - пейсмекером первого порядка. От этого узла возбуждение распространяется на рабочие клетки миокарда предсердий и по специальным внутрисердечным проводящим пучкам достигает второго узла - предсердно-желудочкового (атриовентрикулярного) , который также способен генерировать импульсы. Этот узел является пейсмекером второго порядка. Возбуждение через предсердно-желудо-ковый узел в нормальных условиях возможно только в одном направлении. Ретроградное проведение импульсов невозможно.

Третий уровень, который обеспечивает ритмичную деятельность сердца, расположен в пучке Гиса и волокнах Пуркине.

Центры автоматики, расположенные в проводящей системе желудочков, называются пейсмекерами третьего порядка. В обычных условиях частоту активности миокарда всего сердца в целом определяет синусно-предсердный узел. Он подчиняет себе все нижележащие образования проводящей системы, навязывает свой ритм.

Необходимым условием для обеспечения работы сердца является анатомическая целостность его проводящей системы. Если в пейсмекере первого порядка возбудимость не возникает или блокируется его передача, роль водителя ритма берет на себя пейсмекер второго порядка. Если же передача возбудимости к желудочкам невозможна, они начинают сокращаться в ритме пейсмекеров третьего порядка. При поперечной блокаде предсердия и желудочки сокращаются каждый в своем ритме, а повреждение водителей ритма приводит к полной остановке сердца.

Возбудимость сердечной мышцы возникает под влиянием электрических, химических, термических и других раздражителей мышцы сердца, которая способна переходить в состояние возбуждения. В основе этого явления лежит отрицательный электрический потенциал в первоначальном возбужденном участке. Как и в любой возбудимой ткани, мембрана рабочих клеток сердца поляризована. Снаружи она заряжена положительно, а внутри отрицательно. Это состояние возникает в результате разной концентрации Na + и К + по обе стороны мембраны, а также в результате разной проницаемости мембраны для этих ионов. В состоянии покоя через мембрану кардиомиоцитов не проникают ионы Na + , а только частично проникают ионы К + . Вследствие диффузии ионы К + , выходя из клетки, увеличивают положительный заряд на ее поверхности. Внутренняя сторона мембраны при этом становится отрицательной. Под влиянием раздражителя любой природы в клетку поступает Na + . В этот момент на поверхности мембраны возникает отрицательный электрический заряд и развивается реверсия потенциала. Амплитуда потенциала действия для сердечных мышечных волокон составляет около 100 мВ и более. Возникший потенциал деполяризует мембраны соседних клеток, в них появляются собственные потенциалы действия - происходит распространение возбуждения по клеткам миокарда.

Потенциал действия клетки рабочего миокарда во много раз продолжительнее, чем в скелетной мышце. Во время развития потенциала действия клетка не возбуждается на очередные стимулы. Эта особенность важна для функции сердца как органа, так как миокард может отвечать только одним потенциалом действия и одним сокращением на повторные его раздражения. Все это создает условия для ритмичного сокращения органа.

Таким образом происходит распространение возбуждения в целом органе. Этот процесс одинаков в рабочем миокарде и в водителях ритма. Возможность вызвать возбуждение сердца электрическим током нашла практическое применение в медицине. Под влиянием электрических импульсов, источником которых являются электростимуляторы, сердце начинает возбуждаться и сокращаться в заданном ритме. При нанесении электрических раздражении независимо от величины и силы раздражения работающее сердце не ответит, если это раздражение будет нанесено в период систолы, что соответствует времени абсолютного рефракторного периода. А в период диастолы сердце отвечает новым внеочередным сокращением - экстрасистолой, после которой возникает продолжительная пауза, называемая компенсаторной.

Проводимость сердечной мышцы заключается в том, что волны возбуждения проходят по ее волокнам с неодинаковой скоростью. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8-1,0 м/с, по волокнам мышц желудочков - 0,8-0,9 м/с, а по специальной ткани сердца - 2,0-4,2 м/с. По волокнам скелетной мышцы возбуждение распространяется со скоростью 4,7-5,0 м/с.

Сократимость сердечной мышцы имеет свои особенности в результате строения органа. Первыми сокращаются мышцы предсердий, затем сосочковые мышцы и субэндокардиальный слой мышц желудочков. Далее сокращение охватывает и внутренний слой желудочков, которое обеспечивает тем самым движение крови из полостей желудочков в аорту и легочный ствол.

Изменения сократительной силы мышцы сердца, возникающие периодически, осуществляются при помощи двух механизмов саморегуляции: гетерометрического и гомеометрического.

В основе гетерометрического механизма лежит изменение исходных размеров длины волокон миокарда, которое возникает при изменении притока венозной крови: чем сильнее сердце расширено во время диастолы, тем оно сильнее сокращается во время систолы (закон Франка- Старлинга). Объясняется этот закон следующим образом. Сердечное волокно состоит из двух частей: сократительной и эластической. Во время возбуждения первая сокращается, а вторая растягивается в зависимости от нагрузки.

Гомеометрический механизм основан на непосредственном действии биологически активных веществ (таких, как адреналин) на метаболизм мышечных волокон, выработку в них энергии. Адреналин и норадреналин увеличивают вход Са^ в клетку в момент развития потенциала действия, вызывая тем самым усиление сердечных сокращений.

Рефрактерность сердечной мышцы характеризуется резким снижением возбудимости ткани на протяжении ее активности. Различают абсолютный и относительный рефракторный период. В абсолютном рефракторном периоде, при нанесении электрических раздражении, сердце не ответит на них раздражением и сокращением. Период рефрактерности продолжается столько, сколько продолжается систола. Во время относительного рефракторного периода возбудимость сердечной мышцы постепенно возвращается к первоначальному уровню. В этот период сердечная мышца может ответить на раздражитель сокращением сильнее порогового. Относительный рефракторный период обнаруживается во время диастолы предсердий и желудочков сердца. После фазы относительной рефрактерности наступает период повышенной возбудимости, который по времени совпадает с диастолическим расслаблением и характеризуется тем, что мышца сердца отвечает вспышкой возбуждения и на импульсы небольшой силы.

Сердечный цикл . Сердце здорового человека сокращается ритмично в состоянии покоя с частотой 60-70 ударов в минуту.

Период, который включает одно сокращение и последующее расслабление, составляет сердечный цикл. Частота сокращений выше 90 ударов называется тахикардией, а ниже 60 - брадикардией. При частоте сокращения сердца 70 ударов в минуту полный цикл сердечной деятельности продолжается 0,8-0,86 с.

Сокращение сердечной мышцы называется систолой, расслабление - диастолой. Сердечный цикл имеет три фазы: систолы предсердий, систолы желудочков и общую паузу Началом каждого цикла считается систола предсердий, продолжительность которой 0,1-0,16 с. Во время систолы в предсердиях повышается давление, что ведет к выбрасыванию крови в желудочки. Последние в этот момент расслаблены, створки атриовентрикулярных клапанов свисают и кровь свободно переходит из предсердий в желудочки.

После окончания систолы предсердий начинается систола желудочков продолжительностью 0,3 с. Во время систолы желудочков предсердия уже расслаблены. Как и предсердия, оба желудочка - правый и левый - сокращаются одновременно.

Систола желудочков начинается с сокращений их волокон, возникшего в результате распространения возбуждения по миокарду. Этот период короткий. В данный момент давление в полостях желудочков еще не повышается. Оно начинает резко возрастать, когда возбудимостью охватываются все волокна, и достигает в левом предсердии 70-90 мм рт. ст., а в правом - 15-20 мм рт. ст. В результате повышения внутрижелудочкового давления атриовентрикулярные клапаны быстро закрываются. В этот момент полулунные клапаны тоже еще закрыты и полость желудочка остается замкнутой; объем крови в нем постоянный. Возбуждение мышечных волокон миокарда приводит к возрастанию давления крови в желудочках и увеличению в них напряжения. Появление сердечного толчка в V левом межреберье обусловлено тем, что при повышении напряжения миокарда левый желудочек (сердца) принимает округлую форму и производит удар о внутреннюю поверхность грудной клетки.

Если давление крови в желудочках превышает давление в аорте и легочной артерии, полулунные клапаны открываются, их створки прижимаются к внутренним стенкам и наступает период изгнания (0,25 с). В начале периода изгнания давление крови в полости желудочков продолжает увеличиваться и достигает примерно 130 мм рт. ст. в левом и 25 мм рт. ст. в правом. В результате этого кровь быстро вытекает в аорту и легочный ствол, объем желудочков быстро уменьшается. Это фаза быстрого изгнания. После открытия полулунных клапанов выброс крови из полости сердца замедляется, сокращение миокарда желудочков ослабевает и наступает фаза медленного изгнания. С падением давления полулунные клапаны закрываются, затрудняя обратный ток крови из аорты и легочной артерии, миокард желудочков начинает расслабляться. Снова наступает короткий период, во время которого еще закрыты клапаны аорты и не открыты атриовентрикулярные. Если же давление в желудочках будет немного меньше, чем в предсердиях, тогда раскрываются атриовентрикулярные клапаны и происходит наполнение кровью желудочков, которая снова будет выброшена в очередном цикле, и наступает диастола всего сердца. Диастола продолжается до очередной систолы предсердий. Эта фаза называется общей паузой (0,4 с). Затем цикл сердечной деятельности повторяется.

Лекция 7.

Большой круг кровообращения

Малый круг кровообращения

Сердце.

эндокард миокард эпикард Перикард

двустворчатый клапан трехстворчатый клапан . Клапан аорты клапан легочного ствола

систолы (сокращение) и диастолы (расслабление

Во время диастолы предсердий систолы предсердий . К концу систолы желудочков

Миокард

Возбудимость.

Проводимость.

Сократимость.

Рефрактерность.

Автоматизм -

Атипический миокард

1. синусно-предсердного узла

2.

3. волокнами Пуркинье .

В норме предсердно-желудочковый узел и пучок Гиса являются только передатчиками возбуждений из ведущего узла к сердечной мышце.Автоматизм в них проявляется лишь в тех случаях, когда к ним не поступают импульсы от синусно-предсердного узла.

Показатели сердечной деятельности.

Ударный, или систолический, объем сердца – количество крови, выбрасываемое желудочком сердца в соответствующие сосуды при каждом сокращении. У взрослого здорового человека при относительном покое систолический объем каждого желудочка составляет приблизительно 70-80 мл . Таким образом, при сокращении желудочков в артериальную систему поступает 140-160 мл крови.

Минутный объем – количество крови, выбрасываемое желудочком сердца за 1 мин. Минутный объем сердца – это произведение величины ударного объема на частоту сердечных сокращений в 1 мин. В среднем минутный объем составляет 3-5л/мин . Минутный объем сердца может увеличиваться за счет увеличения ударного объема и частоты сердечных сокращений.

Сердечный индекс – отношение минутного объема крови в л/мин к поверхности тела в м². Для «стандартного» мужчины он равен 3 л/мин·м².

Электрокардиограмма.

В работающем сердце создаются условия для возникновения электрического тока. Во время систолы предсердия становятся электроотрицательными по отношению к желудочкам, находящимся в это время в фазе диастолы. Таким образом, при работе сердца возникает разность потенциалов. Биопотенциалы сердца, записанные с помощью электрокардиографа, носят название электрокардиограммы.

Для регистрации биотоков сердца пользуются стандартными отведениями , для которых выбираются участки на поверхности тела, дающие наибольшую разность потенциалов. Применяют три классических стандартных отведения, при которых электроды укрепляют:I – на внутренней поверхности предплечий обеих рук;II – на правой руке и в области икроножной мышцы левой ноги; III – на левых конечностях. Используют также и грудные отведения.

Нормальная ЭКГ состоит из ряда зубцов и интервалов между ними. При анализе ЭКГ учитывают высоту, ширину, направление, форму зубцов, а также продолжительность зубцов и интервалов между ними, отражает скорость проведения импульсов в сердце. ЭКГ имеет три направленных вверх (положительных) зубца – Р, R,T и два отрицательных зубца, вершины которых обращены вниз, - Q и S.

Зубец Р – характеризует возникновение и распространение возбуждения в предсердиях.

Зубец Q – отражает возбуждение межжелудочковой перегородки

Зубец R – соответствует периоду охвата возбуждением обоих желудочков

Зубец S – характеризует завершение распространения возбуждения в желудочках.

Зубец Т – отражает процесс реполяризации в желудочках. Высота его характеризует состояние обменных процессов, происходящих в сердечной мышце.

Нервная регуляция.

Сердце, как и все внутренние органы, иннервируется вегетативной нервной системой.

Парасимпатические нервы являются волокнами блуждающего нерва. Центральные нейроны симпатических нервов залегают в боковых рогах спинного мозга на уровне I-IV грудных позвонков, отростки этих нейронов направляются в сердце, где иннервируют миокард желудочков и предсердий, образования проводящей системы.

Центры нервов, иннервирующих сердце, всегда находятся в состоянии умеренного возбуждения. За счет этого к сердцу постоянно поступают нервные импульсы. Тонус нейронов поддерживается за счет импульсов, поступающих в ЦНС от рецепторов, заложенных в сосудистой системе. Эти рецепторы располагаются в виде скопления клеток и носят название рефлексогенной зоны сердечно-сосудистой системы. Наиболее важные рефлексогенные зоны располагаются в области каротидного синуса и в области дуги аорты.

Блуждающие и симпатические нервы оказывают на деятельность сердца противоположное влияние по 5 направлениям:

1. хронотропное (изменяет частоту сердечных сокращений);

2. инотропное (изменяет силу сердечных сокращений);

3. батмотропное (оказывает влияние на возбудимость);

4. дромотропное (изменяет способность к проводимости);

5. тонотропное (регулирует тонус и интенсивность обменных процессов).

Парасимпатическая нервная система оказывает отрицательное влияние по всем пяти направлениям, а симпатическая нервная система – положительное.

Таким образом, при возбуждении блуждающих нервов происходит уменьшение частоты, силы сердечных сокращений, уменьшение возбудимости и проводимости миокарда, снижает интенсивность обменных процессов в сердечной мышце.

При возбуждении симпатических нервов происходитувеличение частоты, силы сердечных сокращений, увеличение возбудимости и проводимости миокарда, стимуляция обменных процессов.

Кровеносные сосуды.

По особенностям функционирования выделяют 5 типов кровеносных сосудов:

1. Магистральные – наиболее крупные артерии, в которых ритмически пульсирующий кровотокпревращается в более равномерный и плавный. Это сглаживает резкие колебания давления, чтоспособствует бесперебойному снабжению кровью органов и тканей. Стенки этих сосудов содержатмало гладкомышечных элементов и много эластических волокон.

2. Резистивные (сосуды сопротивления) – включают в себя прекапиллярные (мелкие артерии,артериолы) и посткапиллярные (венулы и мелкие вены) сосуды сопротивления. Соотношение междутонусом пре- и посткапиллярных сосудов определяет уровень гидростатического давления вкапиллярах, величину фильтрационного давления и интенсивность обмена жидкости.

3. Истинные капилляры (обменные сосуды) – важнейший отдел ССС. Через тонкие стенки капилляровпроисходит обмен между кровью и тканями.

4. Емкостные сосуды – венозный отдел ССС. Они вмещают около 70-80% всей крови.

5. Шунтирующие сосуды – артериовенозные анастомозы, обеспечивающие прямую связь между мелкимиартериями и венами в обход капиллярного ложа.

Основной гемодинамический закон : количество крови, протекающей в единицу времени через кровеносную систему тем больше, чем больше разность давления в ее артериальном и венозном концах и чем меньше сопротивление току крови.

Сердце во время систолы выбрасывает кровь в сосуды, эластическая стенка которых растягивается. Во время диастолы стенка возвращается в исходное состояние, так как выброса крови нет. В результате происходит превращение энергии растяжения в кинетическую энергию, которая обеспечивает дальнейшее движение крови по сосудам.

Артериальный пульс.

Артериальный пульс – периодические расширения и удлинения стенок артерий, обусловленные поступлением крови в аорту при систоле левого желудочка.

Пульс характеризуют следующие признаки: частота – число ударов в 1 мин., ритмичность – правильное чередование пульсовых ударов, наполнение – степень изменения объема артерии, устанавливаемая по силе пульсового удара, напряжение – характеризуется силой, которую надо приложить, чтобы сдавить артерию до полного исчезновения пульса.

Кривая, полученная при записи пульсовых колебаний стенки артерии, называется сфигмограммой.

Гладкомышечные элементы стенки кровеносного сосуда постоянно находятся в состоянии умеренного напряжения – сосудистого тонуса . Существует три механизма регуляции сосудистого тонуса:

1. ауторегуляция

2. нервная регуляция

3. гуморальная регуляция.

Ауторегуляция обеспечивает изменение тонуса гладкомышечных клеток под влиянием местного возбуждения. Миогенная регуляция связана с изменением состояния гладкомышечных клеток сосудов в зависимости от степени их растяжения – эффект Остроумова-Бейлиса. Гладкомышечные клетки стенки сосудов при повышении кровяного давления отвечают сокращением на растяжение и расслаблением – на понижение давления в сосудах. Значение: поддержание на постоянном уровне объема крови, поступающей к органу (наиболее выражен механизм в почках, печени, легких, головном мозге).

Нервная регуляция сосудистого тонуса осуществляется вегетативной нервной системой, которая оказывает сосудосуживающее и сосудорасширяющее действие.

Симпатические нервы являются вазоконстрикторами (сужают сосуды) для сосудов кожи, слизистых оболочек, желудочно-кишечного тракта и вазодилататорами (расширяют сосуды) для сосудов головного мозга, легких, сердца и работающих мышц. Парасимпатический отдел нервной системы оказывает на сосуды расширяющее действие.

Гуморальная регуляция осуществляется веществами системного и местного действия. К веществам системного действия относятся ионы кальция, калия, натрия, гормоны. Ионы кальция вызывают сужение сосудов, ионы калия оказывают расширяющее действие.

Действие гормонов на тонус сосудов:

1. вазопрессин – повышает тонус гладкомышечных клеток артериол, вызывая сужение сосудов;

2. адреналин оказывает одновременно и суживающее и расширяющее действие, воздействуя наальфа1-адренорецепторы и бета1-адренорецепторы, поэтому при незначительныхконцентрациях адреналина происходит расширение кровеносных сосудов, а при высоких –сужение;

3. тироксин – стимулирует энергетические процессы и вызывает сужение кровеносных сосудов;

4. ренин – вырабатывается клетками юкстагломерулярного аппарата и поступает в кровоток,оказывая воздействие на белок ангиотензиноген, который переходит в ангиотезин II,вызывающий сужение сосудов.

Метаболиты (углекислый газ, пировиноградная кислота, молочная кислота, ионы водорода) воздействуют на хеморецепторы сердечно-сосудистой системы, приводя к рефлекторному сужению просвета сосудов.

К веществам местного воздействия относятся:

1. медиаторы симпатической нервной системы – сосудосуживающее действие, парасимпатической(ацетилхолин) – расширяющее;

2. биологически активные вещества – гистамин расширяет сосуды, а серотонин суживает;

3. кинины – брадикинин, калидин – оказывают расширяющее действие;

4. простогландины А1, А2, Е1 расширяют сосуды, а F2α суживает.

Перераспределение крови.

Перераспределение крови в сосудистом русле приводит к усилению кровоснабжения одних органов и уменьшению других. Перераспределение крови происходит в основном между сосудами мышечной системы и внутренних органов, особенно органов брюшной полости и кожи. Во время физической работы возросшее количество крови в сосудах скелетных мышц обеспечивает их эффективную работу. Одновременно уменьшается кровоснабжение органов системы пищеварения.

Во время процесса пищеварения расширяются сосуды органов системы пищеварения, кровоснабжение их увеличивается, что создает оптимальные условия для осуществления физической и химической обработки содержимого желудочно-кишечного тракта. В этот период суживаются сосуды скелетных мышц и уменьшается их кровоснабжение.

Физиология микроциркуляции.

Нормальному течению обмена веществ способствуют процессы микроциркуляции – направленного движения жидких сред организма: крови, лимфы, тканевой и цереброспинальной жидкостей и секретов эндокринных желез. Совокупность структур, обеспечивающих это движение, называетсямикроциркуляторным руслом. Основными структурно-функциональными единицами микроциркуляторного русла являются кровеносные и лимфатические капилляры, которые вместе с окружающими их тканями формируют три звенамикроциркуляторного русла : капиллярное кровообращение, лимфообращение и тканевый транспорт.

Стенка капилляра прекрасно приспособлена для выполнения обменных функций. В большинстве случаев она состоит из одного слоя эндотелиальных клеток, между которыми имеются узкие щели.

Процессы обмена в капиллярах обеспечивают два основные механизма: диффузия и фильтрация. Двигательная сила диффузии – градиент концентрации ионов и движение растворителя вслед за ионами. Процесс диффузии в кровеносных капиллярах настолько активный, что при прохождении крови по капилляру вода плазмы успевает до 40 раз обменяться с жидкостью межклеточного пространства. В состоянии физиологического покоя через стенки всех капилляров за 1 мин проходит до 60 л воды. Конечно, сколько воды выходит из крови, столько же ее возвращается назад.

Кровеносные капилляры и прилежащие к ним клетки являются структурными элементамигистогематических барьеров между кровью и окружающими тканями всех без исключения внутренних органов. Эти барьеры регулируют поступление из крови в ткани питательных, пластических и биологически активных веществ, осуществляют отток продуктов клеточного метаболизма, способствуя, таким образом, сохранению органного и клеточного гомеостаза, и, наконец, препятствуют поступлению из крови в ткани чужеродных и ядовитых веществ, токсинов, микроорганизмов, некоторых лекарственных веществ.

Транскапиллярный обмен. Важнейшей функцией гистогематических барьеров является транскапиллярный обмен. Движение жидкости через стенку капилляра происходит за счет разности гидростатического давления крови и гидростатического давления окружающих тканей, а также под действием разности величины осмо-онкотического давления крови и межклеточной жидкости.

Тканевый транспорт. Стенка капилляра морфологически и функционально тесно связана с окружающей ее рыхлой соединительной тканью. Последняя переносит поступающую из просвета капилляра жидкость с растворенными в ней веществами и кислород к остальным тканевым структурам.

Лимфа и лимфообращение.

Лимфатическая система состоит из капилляров, сосудов, лимфатических узлов, грудного и правого лимфатического протоков, из которых лимфа поступает в венозную систему. Лимфатические сосуды – это дренажная система, по которой тканевая жидкость оттекает в кровеносное русло.

У взрослого человека в условиях относительного покоя из грудного протока в подключичную вену ежеминутно поступает около 1 мл лимфы, в сутки – от 1,2 до 1,6 л.

Лимфа – это жидкость, содержащаяся в лимфатических узлах и сосудах. Скорость движения лимфы по лимфатическим сосудам составляет 0,4-0,5 м/с.

По химическому составу лимфа и плазма крови очень близки. Основное отличие - в лимфе содержится значительно меньше белка, чем в плазме крови.

Источник лимфы - тканевая жидкость. Тканевая жидкость образуется из крови в капиллярах. Она заполняет межклеточные пространства всех тканей. Тканевая жидкость является промежуточной средой между кровью и клетками организма. Через тканевую жидкость клетки получают все необходимые для их жизнедеятельности питательные вещества и кислород и в нее же выделяют продукты обмена веществ, в том числе и углекислый газ.

Постоянный ток лимфы обеспечивается непрерывным образованием тканевой жидкости и переходом ее из межтканевых пространств в лимфатические сосуды.

Существенное значение для движения лимфы имеет активность органов и сократительная способность лимфатических сосудов. В лимфатических сосудах имеются мышечные элементы, благодаря чему они обладают способностью активно сокращаться. Наличие клапанов в лимфатических капиллярах обеспечивает движение лимфы в одном направлении (к грудному и правому лимфатическому протокам).

К вспомогательным факторам, способствующим движению лимфы, относятся: сократительная деятельность поперечнополосатых и гладких мышц, отрицательное давление в крупных венах и грудной полости, увеличение объема грудной клетки при вдохе, что обусловливает присасывание лимфы из лимфатических сосудов.

Основными функциями лимфатических капилляров являются дренажная, всасывания, транспортно-элиминативная, защитная и фагоцитоз.

Дренажная функция осуществляется по отношению к фильтрату плазмы с растворенными в нем коллоидами, кристаллоидами и метаболитами. Всасывание эмульсий жиров, белков и других коллоидов осуществляется в основном лимфатическими капиллярами ворсинок тонкого кишечника.

Транспортно-элиминативная – это перенос в лимфатические протоки лимфоцитов, микроорганизмов, а также выведение из тканей метаболитов, токсинов, обломков клеток, мелких инородных частиц.

Защитная функция лимфатической системы выполняется своеобразными биологическими и механическими фильтрами – лимфатическими узлами.

Фагоцитоз заключается в захвате бактерий и инородных частиц.

Лимфатические узлы. Лимфа в своем движении от капилляров к центральным сосудам и протокам проходит через лимфатические узлы. У взрослого человека имеется 500-1000 лимфатических узлов различных размеров – от булавочной головки до мелкого зерна фасоли.

Лимфатические узлы выполняют ряд важных функций : гемопоэтическую, иммунопоэтическую (в лимфоузлах образуются плазматические клетки, вырабатывающие антитела, там же находятся Т-и В-лимфоциты, отвечающие за иммунитет), защитно-фильтрационную, обменную и резервуарную. Лимфатическая система в целом обеспечивает отток лимфы от тканей и поступление ее в сосудистое русло.

Коронарное кровообращение.

Кровь к сердцу поступает по двум венечным артериям. Кровоток в венечных артериях происходит преимущественно во время диастолы.

Кровоток в венечных артериях зависит от кардиальных и внекардиальных факторов:

Кардиальные факторы: интенсивность обменных процессов в миокарде, тонус коронарных сосудов, величина давления в аорте, частота сердечных сокращений. Наилучшие условия для коронарного кровообращения создаются при АД у взрослого человека, равном 110-140 мм рт.ст.

Внекардиальные факторы: влияния симпатических и парасимпатических нервов, иннервирующих венечные сосуды, а также гуморальные факторы. Адреналин, норадреналин в дозах, не влияющих на работу сердца и величину АД, способствуют расширению венечных артерий и увеличению коронарного кровотока. Блуждающие нервы расширяют венечные сосуды. Резко ухудшают коронарное кровообращение никотин, перенапряжение нервной системы, отрицательные эмоции, неправильное питание, отсутствие постоянной физической тренировки.

Легочное кровообращение.

Легкие относятся к органам, в которых кровообращение наряду с трофической выполняет и специфическую – газообменную – функцию. Последнее является функцией малого круга кровообращения. Трофику легочной ткани обеспечивают сосуды большого круга кровообращения. Артериолы, прекапилляры и последующие капилляры тесно связаны с альвеолярной паренхимой. Когда они оплетают альвеолы, образуют настолько густую сеть, что в условиях прижизненной микроскопии с трудом можно определить границы между отдельными сосудами. Благодаря этому в легких кровь омывает альвеолы почти сплошным непрерывным потоком.

Печеночное кровообращение.

Печень имеет две сети капилляров. Одна сеть капилляров обеспечивает деятельность пищеварительных органов, всасывание продуктов переваривания пищи и их транспорт от кишечника к печени. Другая сеть капилляров расположена непосредственно в ткани печени. Она способствует выполнению печенью функций, связанных с обменными и экскреторными процессами.

Кровь, поступающая в венозную систему и сердце, предварительно обязательно проходит через печень. В этом состоит особенность портального кровообращения, обеспечивающего осуществление печенью обезвреживающей функции.

Мозговое кровообращение.

Головной мозг обладает уникальной особенностью кровообращения: оно совершается в замкнутом пространстве черепа и находится во взаимосвязи с кровообращением спинного мозга и перемещениями цереброспинальной жидкости.

Через сосуды мозга в 1 минуту проходит до 750мл крови, что составляет около 13% МОК, при массе мозга около 2-2,5% массы тела. К головному мозгу кровь притекает по четырем магистральным сосудам – двум внутренним сонным и двум позвоночным, а оттекает по двум яремным венам.

Одной из наиболее характерных особенностей мозгового кровотока является его относительное постоянство, автономность. Суммарный объемный кровоток мало зависит от изменений центральной гемодинамики. Кровоток в сосудах мозга может изменяться лишь при резко выраженных отклонениях центральной гемодинамики от условий нормы. С другой стороны, повышение функциональной активности мозга, как правило, не влияет на центральную гемодинамику и объем крови, поступающий к мозгу.

Относительное постоянство кровообращения мозга определяется необходимостью создания гомеостатических условий для функционирования нейронов. В мозге нет запасов кислорода, а запасы основного метаболита окисления – глюкозы – минимальны, поэтому необходима постоянная их доставка кровью. Кроме того, постоянство условий микроциркуляции обеспечивает постоянство водного обмена между тканью мозга и кровью, кровью и спинномозговой жидкостью. Увеличение образования спинномозговой жидкости и межклеточной воды может привести к сдавливанию мозга, заключенного в замкнутую черепную коробку.

1. Строение сердца. Роль клапанного аппарата

2. Свойства сердечной мышцы

3. Проводящая система сердца

4. Показатели и методы исследования сердечной деятельности

5. Регуляция деятельности сердца

6. Типы кровеносных сосудов

7. Артериальное давление и пульс

8. Регуляция сосудистого тонуса

9. Физиология микроциркуляции

10. Лимфа и лимфообращение

11. Деятельность сердечно-сосудистой системы при физической нагрузке

12. Особенности регионарного кровообращения.

1. Функции системы крови

2. Состав крови

3. Осмотическое и онкотическое давление крови

4. Реакция крови

5. Группы крови и резус-фактор

6. Эритроциты

7. Лейкоциты

8. Тромбоциты

9. Гемостаз.

1. Три звена дыхания

2. Механизм вдоха и выдоха

3. Дыхательные объемы

4. Транспорт газов кровью

5. Регуляция дыхания

6. Дыхание при физической нагрузке.

Физиология сердечно-сосудистой системы.

Лекция 7.

Система кровообращения состоит из сердца, сосудов (кровеносных и лимфатических), органов депо крови, механизмов регуляции системы кровообращения. Основная ее функция заключается в обеспечении постоянного движения крови по сосудам.

Кровь в организме человека циркулирует по двум кругам кровообращения.

Большой круг кровообращения начинается аортой, которая отходит от левого желудочка, и заканчивается верхней и нижней полыми венами, впадающими в правое предсердие. Аорта дает начало крупным, средним и мелким артериям. Артерии переходят в артериолы, которые заканчиваются капиллярами. Капилляры широкой сетью пронизывают все органы и ткани организма. В капиллярах кровь отдает тканям кислород и питательные вещества, а из них в кровь поступают продукты обмена веществ, в том числе и углекислый газ. Капилляры переходят в венулы, кровь из которых попадает в мелкие, средние и крупные вены. Кровь от верхней части туловища поступает в верхнюю полую вену, от нижней – в нижнюю полую вену. Обе эти вены впадают в правое предсердие, где заканчивается большой круг кровообращения.

Малый круг кровообращения (легочный) начинается легочным стволом, который отходит от правого желудочка и несет в легкие венозную кровь. Легочный ствол разветвляется на две ветви, идущие к левому и правому легкому. В легких легочные артерии делятся на более мелкие артерии, артериолы и капилляры. В капиллярах кровь отдает углекислый газ и обогащается кислородом. Легочные капилляры переходят в венулы, которые затем образуют вены. По четырем легочным венам артериальная кровь поступает в левое предсердие.

Сердце.

Сердце человека – полый мышечный орган. Сплошной вертикальной перегородкой сердце делится на левую и правую половины (которые у взрослого здорового человека между собой не сообщаются ). Горизонтальная перегородка вместе с вертикальной делит сердце на четыре камеры. Верхние камеры – предсердия, нижние – желудочки.

Стенка сердца состоит из трех слоев. Внутренний слой (эндокард )представлен эндотелиальной оболочкой. Средний слой (миокард ) состоит из поперечнополосатой мышцы. Наружная поверхность сердца покрыта серозной оболочкой (эпикард ), являющейся внутренним листком околосердечной сумки – перикарда.Перикард (сердечная сорочка) окружает сердце, как мешок, и обеспечивает его свободное движение.

Внутри сердца имеется клапанный аппарат, который предназначен для регуляции кровотока.

Левое предсердие от левого желудочка отделяет двустворчатый клапан . На границе между правым предсердием и правым желудочком находится трехстворчатый клапан . Клапан аорты отделяет ее от левого желудочка, а клапан легочного ствола отделяет его от правого желудочка.

Клапанный аппарат сердца обеспечивает движение крови в полостях сердца в одном направлении. Открытие и закрытие клапанов сердца связано с изменением величины давления в полостях сердца.

Цикл сердечной деятельности продолжается 0,8 – 0,86 сек и состоит из двух фаз – систолы (сокращение) и диастолы (расслабление ). Систола предсердий длится 0,1 сек, диастола 0,7 сек. Систола желудочков сильнее систолы предсердий и продолжается около 0,3-0,36 с, диастола – 0,5с. Общая пауза (одновременная диастола предсердий и желудочков) длится 0,4 с. В течение этого периода сердце отдыхает.

Во время диастолы предсердий предсердно-желудочковые клапаны открыты и кровь, поступающая из соответствующих сосудов, заполняет не только их полости, но и желудочки. Во время систолы предсердий желудочки полностью заполняются кровью. К концу систолы желудочков давление в них становится больше давления в аорте и легочном стволе. Это способствует открытию полулунных клапанов аорты и легочногоствола, и кровь из желудочков поступает в соответствующие сосуды.

Миокард представлен поперечно-полосатой мышечной тканью, состоящей из отдельных кардиомиоцитов, которые соединяются между собой с помощью специальных контактов и образуют мышечное волокно. В результате миокард анатомически непрерывен и работает как единое целое. Благодаря такому функциональному строению обеспечивается быстрая передача возбуждения с одной клетки на другую. По особенностям функционирования выделяют рабочий (сокращающийся) миокард и атипическую мускулатуру.

Основные физиологические свойства сердечной мышцы.

Возбудимость. Сердечная мышца менее возбудима, чем скелетная.

Проводимость. Возбуждение по волокнам сердечной мышцы распространяется с меньшей скоростью, чем по волокнам скелетной мышцы.

Сократимость. Сердце, в отличие от скелетной мышцы, подчиняется закону «все или ничего». Сердечная мышца максимально сокращается и на пороговое, и на более сильное по величине раздражение.

К физиологическим особенностям сердечной мышцы относятся удлиненный рефрактерный период и автоматизм

Рефрактерность. Сердце имеет значительно выраженный и удлиненный рефрактерный период. Он характеризуется резким снижением возбудимости ткани в период ее активности. Благодаря выраженному рефрактерному периоду, который длится дольше, чем период систолы, сердечная мышца не способна к тетаническому (длительному) сокращению и совершает свою работу по типу одиночного мышечного сокращения.

Автоматизм - способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом.

Атипический миокард образует проводящую систему сердца и обеспечивает генерацию и проведение нервных импульсов. В сердце атипические мышечные волокна образуют узлы и пучки, которые объединяются в проводящую систему, состоящую из следующих отделов:

1. синусно-предсердного узла , располагающегося на задней стенке правого предсердия у меставпадения верхней полой вены;

2. предсердно-желудочкового узла (атриовентрикулярный узел), находящегося в стенке правогопредсердия вблизи перегородки между предсердиями и желудочками;

3. предсердно-желудочкового пучка (пучок Гиса), отходящего от предсердно-желудочкового узлаодним стволом. Пучок Гиса, пройдя через перегородку между предсердиями и желудочками,делится на две ножки, идущие к правому и левому желудочкам. Заканчивается пучок Гиса втолще мышц волокнами Пуркинье .

Синусно-предсердный узел является ведущим в деятельности сердца (водитель ритма), в нем возникают импульсы, определяющие частоту и ритм сокращений сердца. В норме предсердно-желудочковый узел и пучок Гиса являются только передатчиками возбуждений из ведущего у

Масса крови перемещается по замкну­той сосудистой системе, состоящей из боль­шого и малого кругов кровообращения, в строгом соответствии с основными физи­ческими принципами, в том числе с прин­ципом неразрывности потока. Согласно этому принципу разрыв потока при вне­запных травмах и ранениях, сопровожда­ющихся нарушением целостности сосудис­того русла, приводит к потере как час­ти объема циркулирующей крови, так и большого количества кинетической энер­гии сердечного сокращения. В нормально функционирующей системе кровообраще­ния согласно принципу неразрывности потока через любое поперечное сечение замкнутой сосудистой системы в единицу времени перемещается один и тот же объем крови.

Дальнейшее изучение функций крово­обращения как в эксперименте, так и в кли­нике, привело к пониманию того, что кро­вообращение наряду с дыханием относится к числу наиболее важных жизнеобес­печивающих систем, или к так называе­мым «витальным» функциям организма, прекращение функционирования которых приводит к смерти в течение нескольких секунд или минут. Между общим состоя­нием организма больного и состоянием кровообращения существует прямая зави­симость, поэтому состояние гемодинами­ки является одним из определяющих кри­териев тяжести заболевания. Развитие любого тяжелого заболевания всегда со­провождается изменениями функции кро­вообращения, проявляющимися либо в его патологической активации (напряжение), либо в депрессии той или иной степени выраженности (недостаточность, несосто­ятельность). Первичное поражение цир­куляции характерно для шоков различ­ной этиологии.

Оценка и поддержание адекватности гемодинамики являются важнейшим ком­понентом деятельности врача при проведении анестезии, интенсивной терапии и реанимации.

Система кровообращения осуществля­ет транспортную связь между органами и тканями организма. Кровообращение вы­полняет множество взаимосвязанных функ­ций и обуславливает интенсивность сопря­женных процессов, в свою очередь, влия­ющих на кровообращение. Все реализуе­мые кровообращением функции характе­ризуются биологической и физиологичес­кой специфичностью и ориентированы на осуществление феномена переноса масс, клеток и молекул, выполняющих защит­ные, пластические, энергетические и инфор­мационные задачи. В наиболее общей фор­ме функции кровообращения сводятся к массопереносу по сосудистой системе и к массообмену с внутренней и внешней сре­дой. Это явление, наиболее четко просле­живаемое на примере газообмена, лежит в основе роста, развития и гибкого обеспе­чения различных режимов функциональ­ной активности организма, объединяя его в динамическое целое.


К основным функциям кровообращения относятся:

1. Транспорт кислорода из легких к тка­ням и углекислого газа из тканей к легким.

2. Доставка пластических и энергетичес­ких субстратов к местам их потребления.

3. Перенос продуктов метаболизма к органам, где происходит их дальнейшее превращение и экскреция.

4. Осуществление гуморальной взаимо­связи между органами и системами.

Кроме этого, кровь играет роль буфера между внешней и внутренней средой и является наиболее активным звеном в гид­рообмене организма.

Система кровообращения образована сердцем и сосудами. Оттекающая от тка­ней венозная кровь поступает в правое предсердие, а оттуда - в правый желудо­чек сердца. При сокращении последнего кровь нагнетается в легочную артерию. Протекая через легкие, кровь подвергает­ся полной или частичной эквилибрации с альвеолярным газом, в результате чего она отдает избыток углекислого газа и насы­щается кислородом. Система легочных сосудов (легочные артерии, капилляры и вены) образует малый (легочный) круг кровообращения . Артериализированная кровь из легких по легочным венам по­ступает в левое предсердие, а оттуда - в левый желудочек. При его сокращении кровь нагнетается в аорту и далее - в артерии, артериолы и капилляры всех ор­ганов и тканей, откуда по венулам и ве­нам оттекает в правое предсердие. Систе­ма перечисленных сосудов образует боль­шой круг кровообращения. Любой элемен­тарный объем циркулирующей крови пос­ледовательно проходит все перечисленные отделы системы кровообращения (за ис­ключением порций крови, подвергающих­ся физиологическому либо патологичес­кому шунтированию).

Исходя из целей клинической физио­логии, кровообращение целесообразно рас­сматривать как систему, состоящую из сле­дующих функциональных отделов:

1. Сердце (сердечный насос) - глав­ный двигатель циркуляции.

2. Сосуды-буферы, или артерии, выпол­няющие преимущественно пассивную транспортную функцию между насосом и системой микроциркуляции.

3. Сосуды-емкости, или вены, выполня­ющие транспортную функцию возврата крови к сердцу. Это более активная, чем артерии, часть системы кровообращения, поскольку вены способны изменять свой объем в 200 раз, активно участвуя в регу­ляции венозного возврата и циркулирую­щего объема крови.

4. Сосуды распределения (сопротивле­ния) - артериолы, регулирующие кро­воток через капилляры и являющиеся глав­ным физиологическим средством регио­нарного распределения сердечного выбро­са, а также венулы.

5. Сосуды обмена - капилляры, интег­рирующие систему кровообращения в об­щее движение жидкости и химических ве­ществ в организме.

6. Сосуды-шунты - артерио-венозные анастомозы, регулирующие периферичес­кое сопротивление при спазме артериол, сокращающем кровоток через капилляры.

Три первых отдела кровообращения (сердце, сосуды-буферы и сосуды-емко­сти) представляют собой систему макроциркуляции, остальные - образуют сис­тему микроциркуляции.

В зависимости от уровня давления кро­ви выделяют следующие анатомо-функциональные фрагменты системы крово­обращения:

1. Система высокого давления (от ле­вого желудочка до капилляров большого круга) кровообращения.

2. Система низкого давления (от капил­ляров большого круга до левого предсер­дия включительно).

Хотя сердечно-сосудистая система яв­ляется целостным морфофункциональным образованием, для понимания процессов циркуляции целесообразно рассматривать основные аспекты деятельности сердца, сосудистого аппарата и регуляторных ме­ханизмов по отдельности.

Сердце

Этот орган массой около 300 г снабжа­ет кровью «идеального человека» массой 70 кг в течение примерно 70 лет. В покое каждый желудочек сердца взрослого че­ловека выбрасывает 5 -5,5 л крови в ми­нуту; следовательно, за 70 лет производи­тельность обоих желудочков составляет приблизительно 400 млн. л, даже если че­ловек находится в состоянии покоя.

Обменные потребности организма зави­сят от его функционального состояния (покой, физическая активность, тяжелые заболевания, сопровождающиеся гипер­метаболическим синдромом). Во время тяжелой нагрузки минутный объем может возрастать до 25 л и более в результате увеличения силы и частоты сердечных со­кращений. Некоторые из этих изменений обусловлены нервными и гуморальными воздействиями на миокард и рецепторный аппарат сердца, другие являются физичес­ким следствием воздействия «растяги­вающей силы» венозного возврата на со­кратительную силу волокон сердечной мышцы.

Процессы, происходящие в сердце, ус­ловно разделяют на электрохимические (автоматия, возбудимость, проводимость) и механические, обеспечивающие сократи­тельную активность миокарда.

Электрохимическая деятельность серд­ца. Сокращения сердца происходят вслед­ствие периодически возникающих в сер­дечной мышце процессов возбуждения. Сердечная мышца - миокард - обладает рядом свойств, обеспечивающих его непре­рывную ритмическую деятельность, - автоматией, возбудимостью, проводимостью и сократимостью.

Возбуждение в сердце возникает перио­дически под влиянием процессов, проте­кающих в нем. Это явление получило на­звание автоматии. Способностью к автоматии обладают определенные участки сердца, состоящие из особой мышечной тка­ни. Эта специфическая мускулатура об­разует в сердце проводящую систему, со­стоящую из синусового (синусно-предсердного, синоатриального) узла - главного водителя ритма сердца, расположенного в стенке предсердия около устьев полых вен, и предсердно-желудочкового (атриовентрикулярного) узла, находящегося в ниж­ней трети правого предсердия и межже­лудочковой перегородки. От атриовентрикулярного узла берет начало предсердно-желудочковый пучок (пучок Гиса), про­бодающий предсердно-желудочковую пе­регородку и разделяющийся на левую и правую ножки, следующие в межжелудоч­ковую перегородку. В области верхушки сердца ножки предсердно-желудочкового пучка загибаются вверх и переходят в сеть сердечных проводящих миоцитов (волок­на Пуркинье), погруженных в сократи­тельный миокард желудочков. В физио­логических условиях клетки миокарда на­ходятся в состоянии ритмической актив­ности (возбуждения), что обеспечивается эффективной работой ионных насосов этих клеток.

Особенностью проводящей системы серд­ца является способность каждой клетки самостоятельно генерировать возбужде­ние. В обычных условиях автоматия всех расположенных ниже участков проводя­щей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения этого узла (генерирующего импульсы с час­тотой 60 - 80 ударов в минуту) водителем ритма может стать предсердно-желудочковый узел, обеспечивающий частоту 40 - 50 ударов в минуту, а если оказывается выключенным и этот узел - волокна пуч­ка Гиса (частота 30 - 40 ударов в мину­ту). При выходе из строя и этого водите­ля ритма процесс возбуждения может воз­никнуть в волокнах Пуркинье с очень ред­ким ритмом - примерно 20/мин.

Возникнув в синусовом узле, возбуж­дение распространяется на предсердие, до­стигая атриовентрикулярного узла, где бла­годаря небольшой толщине его мышечных волокон и особому способу их соедине­ния возникает некоторая задержка про­ведения возбуждения. Вследствие этого возбуждение достигает предсердно-желу-дочкового пучка и волокон Пуркинье лишь после того, как мускулатура предсер­дий успевает сократиться и перекачать кровь из предсердий в желудочки. Таким образом, атриовентрикулярная задержка обеспечивает необходимую последова­тельность сокращений предсердий и же­лудочков.

Наличие проводящей системы обеспечи­вает ряд важных физиологических функ­ций сердца: 1) ритмическую генерацию им­пульсов; 2) необходимую последователь­ность (координацию) сокращений предсер­дий и желудочков; 3) синхронное вовле­чение в процесс сокращения клеток мио­карда желудочков.

Как экстракардиальные влияния, так и факторы, непосредственно поражающие структуры сердца, могут нарушать эти со­пряженные процессы и приводить к раз­витию различных патологий сердечного ритма.

Механическая деятельность сердца. Сердце нагнетает кровь в сосудистую сис­тему благодаря периодическому сокра­щению мышечных клеток, составляющих миокард предсердий и желудочков. Со­кращение миокарда вызывает повышение давления крови и изгнание ее из камер сердца. Вследствие наличия общих слоев миокарда у обоих предсердий и обоих желудочков возбуждение одновременно достигает их клеток и сокращение обоих предсердий, а затем и обоих желудоч­ков осуществляется практически син­хронно. Сокращение предсердий начинается в области устьев полых вен, в результате чего устья сжимаются. Поэтому кровь может двигаться через предсердно-желудочковые клапаны только в одном направ­лении - в желудочки. В момент диасто­лы желудочков клапаны раскрываются и пропускают кровь из предсердий в желу­дочки. В левом желудочке находится дву­створчатый, или митральный, клапан, в правом - трехстворчатый клапан. Объем желудочков постепенно возрастает до тех пор, пока давление в них не превысит дав­ление в предсердии и клапан не закроет­ся. В этот момент объем в желудочке пред­ставляет собой конечный диастолический объем. В устьях аорты и легочной арте­рии имеются полулунные клапаны, состо­ящие из трех лепестков. При сокращении желудочков кровь устремляется в сторо­ну предсердий и створки предсердно-желудочковых клапанов захлопываются, в это время полулунные клапаны тоже пока остаются закрытыми. Начало сокращения желудочка при полностью закрытых кла­панах, превращающих желудочек во вре­менно изолированную камеру, соответству­ет фазе изометрического сокращения.

Повышение давления в желудочках при их изометрическом сокращении происхо­дит до тех пор, пока оно не превысит дав­ление в крупных сосудах. Следствием этого является изгнание крови из правого желудочка в легочную артерию и из лево­го желудочка в аорту. При систоле желу­дочков лепестки клапана под давлением крови прижимаются к стенкам сосудов, и она беспрепятственно изгоняется из же­лудочков. Во время диастолы давление в желудочках становится ниже, чем в круп­ных сосудах, кровь устремляется из аорты и легочной артерии в направлении желу­дочков и захлопывает полулунные клапа­ны. Вследствие падения давления в каме­рах сердца во время диастолы, давление в венозной (приносящей) системе начинает превышать давление в предсердиях, куда кровь притекает из вен.

Наполнение сердца кровью обусловле­но рядом причин. Первая - наличие ос­татка движущей силы, вызванной сокра­щением сердца. Среднее давление крови в венах большого круга - 7 мм рт. ст., а в полостях сердца во время диастолы стре­мится к нулю. Таким образом, градиент давления составляет всего около 7 мм рт. ст. Это надо учитывать во время хирургичес­ких вмешательств - любое случайное сдавливание полых вен может полностью прекратить доступ крови к сердцу.

Вторая причина притока крови к серд­цу - сокращение скелетных мышц и на­блюдающееся при этом сдавливание вен конечностей и туловища. В венах имеют­ся клапаны, пропускающие кровь только в одном направлении - к сердцу. Эта так называемая венозная помпа обеспечивает значительное увеличение притока веноз­ной крови к сердцу и сердечного выброса при физической работе.

Третья причина увеличения венозного возврата - присасывающий эффект кро­ви грудной клеткой, которая представляет собой герметически закрытую полость с отрицательным давлением. В момент вдо­ха эта полость увеличивается, органы, рас­положенные в ней (в частности, полые ве­ны), растягиваются, и давление в полых венах и предсердиях становится отрица­тельным. Определенное значение имеет также присасывающая сила расслабляю­щихся подобно резиновой груше желудоч­ков.

Под сердечным циклом понимают пе­риод, состоящий из одного сокращения (систола) и одного расслабления (диас­тола).

Сокращение сердца начинается с сис­толы предсердий, длящейся 0,1 с. При этом давление в предсердиях повышается до 5 - 8 мм рт. ст. Систола желудочков про­должается около 0,33 с и состоит из не­скольких фаз. Фаза асинхронного сокра­щения миокарда длится от начала сокра­щения до закрытия атриовентрикулярных клапанов (0,05 с). Фаза изометрического сокращения миокарда начинается с захло­пывания атриовентрикулярных клапанов и заканчивается открытием полулунных (0,05 с).

Период изгнания составляет около 0,25 с. За это время часть крови, содержащейся в желудочках, изгоняется в крупные сосу­ды. Остаточный систолический объем зависит от величины сопротивления работы сердца и от силы его сокращения.

Во время диастолы давление в желу­дочках падает, кровь из аорты и легочной артерии устремляется обратно и захлопы­вает полулунные клапаны, затем кровь притекает в предсердия.

Особенностью кровоснабжения миокар­да является то, что кровоток в нем осуще­ствляется в фазу диастолы. В миокарде имеются две системы сосудов. Снабжение левого желудочка происходит по сосудам, отходящим от коронарных артерий под острым углом и проходящим по поверх­ности миокарда, их ветви снабжают кровью 2/3 наружной поверхности миокарда. Другая система сосудов проходит под ту­пым углом, прободает всю толщу миокар­да и осуществляет кровоснабжение 1/3 внутренней поверхности миокарда, развет­вляясь эндокардиально. В период диа­столы кровоснабжение этих сосудов зави­сит от величины внутрисердечного давле­ния и давления извне на сосуды. На суб-эндокардиальную сеть влияет среднее дифференциальное диастолическое давле­ние. Чем оно выше, тем хуже наполнение сосудов, т. е. нарушается коронарный кро­воток. У больных с дилатацией чаще воз­никают очаги некроза в субэндокардиальном слое, чем интрамурально.

Правый желудочек тоже имеет две сис­темы сосудов: первая проходит через всю толщу миокарда; вторая образует субэндокардиальное сплетение (1/3). Сосуды перекрывают друг друга в субэндокардиальном слое, поэтому инфарктов в об­ласти правого желудочка практически не бывает. Дилатированное сердце всегда имеет плохой коронарный кровоток, но потребляет кислорода больше, чем нор­мальное.