Металл индий: описание, свойства и применение. Индий металл

C давних пор в Европе высоко ценилась привозимая из страны чудес Индии ярко-синяя краска «индиго». По чистоте цвета она могла соперничать с синими лучами солнечного спектра. Владельцы текстильных предприятий не скупились на расходы, чтобы приобрести эту королеву красок, применявшуюся для крашения сукна и других тканей.

Когда в конце XVIII века Франция оказалась отрезанной английским военным флотом от Индии и других южных стран, многие заморские товары, в том числе и знаменитая краска «индиго», стали весьма дефицитными. Наполеон, желавший сохранить для своей армии традиционные темно-синие мундиры, пообещал колоссальную премию — миллион франков! -тому, кто найдет способ получения чудесной краски из европейского сырья.

Мы не случайно начали рассказ об одном из редких металлов- индии — с упоминания о краске «индиго»: ведь именно ей элемент № 49 обязан своим названием. В 1863 году в химической лаборатории маленького немецкого городка Фрейберга профессор Фердинанд Рейх и его ассистент Теодор Рихтер занимались спектроскопическим исследованием цинковых минералов Саксонских гор, надеясь обнаружить в них открытый за два года до этого элемент таллий.

Ученые подвергали анализу образец за образцом, однако, как ни вглядывались они в возникающие перед ними спектры, сочных зеленых линий, присущих таллию, не было и в помине. Но, видимо, в тот погожий день фортуне очень уж не хотелось поворачиваться спиной к фрейбергским химикам. Почему бы.не вознаградить их за долготерпенье и кропотливый труд? И вот в очередном спектре перед взором Мученых предстала необыкновенно яркая синяя линия, не принадле-

жавшая ни одному из известных элементов. Рейху и Рихтеру стало ясно, что им посчастливилось открыть новый элемент. А за сходство его спектральной линии с королевой красок «новорожденного» решено было назвать индием.

Теперь перед учеными встала проблема: выделить металл в чистом виде. Немало потратили они времени и труда, прежде чем сумели получить два образца металлического индия, каждый величиной с карандаш. Кстати, сходство с карандашом было не только внешним: индий оказался удивительно мягким металлом — почти в пять раз мягче свинца и в 20 раз мягче чистого золота.

Из десяти минералов, составляющих шкалу твердости по Моосу, девять тверже индия; ему уступает лишь самый податливый из них — тальк. На бумаге индий оставляет заметный след. Однако писать индиевыми «карандашами» было бы таким же безрассудным расточительством, как топить печку ассигнациями: французская Академия наук оценила образцы нового металла в 80 тысяч долларов — по 700 долларов за грамм!

Появляясь на свет, индий, разумеется, не подозревал, что доставит немало хлопот великому русскому химику Д. И. Менделееву. Впрочем, виноват в этом был не столько индий, сколько его первооткрыватели: они приняли новый металл за близкого родственника цинка и поэтому ошибочно решили, что он, как и цинк, двухвалентен. Кроме того, ученые неправильно определили его атомный вес, посчитав его равным 75,6.

Но в этом случае для индия не находилось места в периодической таблице, и Менделеев пришел к выводу, что индий трехвалентен, по свойствам он гораздо ближе к алюминию, чем к цинку, а атомный вес его составляет примерно 114.1 Это был далеко не единственный случай, когда великий химик на основе обнаруженного им закона вносил существенные коррективы в характеристики уже известных элементов. И на этот раз жизнь подтвердила его правоту: атомный вес индия, определенный с помощью самых точных методов, оказался равным 114,82.1 Элементу было отведено место № 49 в третьем ряду периодической системы.

Природный индий состоит из двух изотопов с массовыми числами 113 и 115, причем доля более тяжелого из них значительно солиднее-95,7%. До середины XX века оба эти изотопа имели репутацию стабильных. Однако в 1951 году ученые установили, что индий-115 все же подвержен бета-распаду и постепенно превращается в олово-115. Правда, процесс этот протекает крайне медленно: период полураспада ядер индия-115 очень велик — 6-1014 лет. Вполне понятно, что при таких «темпах» индию долго удавалось скрывать свою радиоактивность. В последние десятилетия физики получили около 20 радиоактивных изотопов индия; период полураспада наиболее долгоживущего из них (индия-114) — 49 дней.

Подобно многим другим металлам, индий долгое время не находил практического применения. И на это были вполне уважительные причины: ведь индий не только довольно редкий элемент (по содержанию в земной коре он среди «обитателей» периодической системы занимает скромное место в седьмом десятке), но и крайне рассеянный: в природе практически нет минералов, в которых главным компонентом (или хотя бы одним из основных) был бы индий. В лучшем случае его можно встретить в виде ничтожных примесей к рудам других металлов, где содержание его не превышает обычно 0,05%. Можно себе представить, какие трудности надо преодолеть, чтобы извлечь из этих руд спрятавшиеся в них крохи индия.

Однако свойства этого металла не могли оставлять равнодушными представителей технического мира. В 1924 году индием всерьез заинтересовался американский инженер Маррей. В поисках индиевых месторождений он вдоль и поперек исколесил Соединенные Штаты Америки, пока, наконец, в песчаных холмах Аризоны не обнаружил хоть и не ахти какие, но все же более высокие, чем в других местах, концентрации этого рассеянного элемента. Вскоре здесь возник завод по производству индия.

Одной из первых областей применения индия стало изготовление высококачественных зеркал, необходимых для астрономических приборов, прожекторов, рефлекторов и тому подобных устройств. Оказывается, обычное зеркало не одинаково отражает световые лучи различных цветов. Это значит, например, что цветная одежда, если ее рассматривать в зеркало, имеет несколько иную окраску, чем на самом деле.

Правда, глаз модницы, сидящей перед трельяжем, не в состоянии зафиксировать такие перемены в ее туалете, но для многих приборов цветовая фальсификация просто недопустима. И серебряные, и оловянные, и ртутно-висмутовые зеркала грешат этим недостатком.

Индий же не только обладает чрезвычайно высокой отражательной способностью, но и проявляет при этом полнейшую объективность, совершенно одинаково относясь ко всем цветам радуги — от красного до фиолетового. Вот почему, чтобы свет, излучаемый далекими звездами, доходил до астрономов неискаженным, в телескопах устанавливают индиевые зеркала.

В отличие от серебра, индий не тускнеет на воздухе, сохраняя высокий коэффициент отражения. Между прочим, индий сыграл немаловажную роль при… защите Лондона от массированных налетов немецкой авиации во время второй мировой войны. На первый взгляд, такое утверждение может показаться странным, но именно индиевые зеркала позволяли прожекторам противовоздушной обороны в поисках воздушных пиратов легко пробивать мощными лучами плотный туман, нередко окутывавший британские острова.

Поскольку индий имеет низкую температуру плавления — всего 156°С, во время работы прожектора зеркало постоянно нуждалось в охлаждении, однако английское военное ведомство охотно шло на дополнительные расходы, с удовлетворением подсчитывая число сбитых вражеских самолетов.

Но часто в технике низкая температура плавления может служить не недостатком, а достоинством. Так, сплав индия с висмутом, свинцом, оловом и кадмием плавится уже при 46,8°С и благодаря этому успешно справляется с ролью автоматического контролера, предохраняющего ответственные узлы и детали различных механизмов от перегрева. Известен сплав индия с галлием и оловом, который даже при комнатной температуре находится в жидком состоянии: он плавится при 10,6°С. Плавкие предохранители из индиевых сплавов широко используют в системах пожарной сигнализации.

Любопытные эксперименты, связанные с температурой плавления индия, были проведены в Канаде. Исследуя с помощью электронного микроскопа мельчайшие частицы этого металла, канадские физики обнаружили, что, когда размер частиц индия становится меньше некоторой величины, температура плавления его резко понижается. Так, частицы индия размером не более 30 ангстрем плавятся при температуре чуть выше 40°С.

Такой колоссальный скачок — от 156 до 40°С — представляет для ученых несомненный интерес. Но природа этого эффекта даже для видавшей виды современной физики пока остается загадкой: ведь теория процессов плавления разрабатывалась применительно к значительным массам вещества, а в опытах канадских физиков расплавлению подвергались «гомеопатические» дозы индия — всего несколько тысяч атомов.

Ценное свойство индия — его высокая стойкость к действию едких щелочей и морской воды.1 Эту способность приобретают и медные сплавы, в которые введено даже небольшое количество индия. Обшивка нижней части корабля, выполненная из такого сплава, легко переносит длительное пребывание в соленом подводном царстве.

Подшипникам, применяемым в современной технике, например в авиационных моторах, приходится трудиться в довольно тяжелых условиях: скорость вращения вала достигает нескольких тысяч оборотов в минуту, металл при этом нагревается и его сопротивление разъедающему действию смазочных масел снижается. Чтобы металл подшипников не подвергался эрозии, ученые предложили наносить на них тонкий слой индия. Его атомы не только плотно покрывают рабочую поверхность металла, но и проникают вглубь, образуя с ним прочный сплав. Такой металл смазке уже не по зубам: срок службы подшипников возрастает в пять раз.

Кстати, о зубах. Из индиевых сплавов (например, с серебром, оловом, медью и цинком), которым свойственны высокая прочность, коррозионная стойкость, долговечность, изготовляют зубные пломбы. В этих сплавах индий играет ответственную роль: он сводит к минимуму усадку металла при затвердевании пломбы.

Авиаторы хорошо знакомы с цинкоиндиевым сплавом, служащим антикоррозионным покрытием для стальных пропеллеров. Своеобразным тончайшим «одеялом» из олова и окиси g индия «укутывают» ветровые стекла самолетов. Такое стекло не замерзает — на нем не появляются ледяные узоры, которые вряд ли радовали бы взор пилотов. Сплавы индия широко используют для склеивания стекол или стекла с металлом (например, в вакуумной технике).

Некоторые сплавы индия очень красивы — неудивительно, что они приглянулись ювелирам. Как декоративный металл используют, в частности, сплав 75% золота, 20% серебра и 5% индия — так называемое зеленое золото. Известная американская фирма «Студебеккер» вместо хромирования наружных деталей автомобилей не без успеха применила индирова-ние. Индиевое покрытие значительно долговечнее хромистого.

В атомных реакторах индиевая фольга служит контролером, измеряющим интенсивность потока тепловых нейтронов и их энергию: сталкиваясь с ядрами стабильных изотопов индия, нейтроны превращают их в радиоактивные; при этом возникает излучение электронов, по интенсивности и энергии которого судят о нейтронном потоке.

Но бесспорно важнейшая область применения индия в современной технике — промышленность полупроводников.

Индий высокой чистоты необходим для изготовления германиевых выпрямителей и усилителей: он выступает при этом в роли примеси, обеспечивающей дырочную проводимость в германии. Кстати, сам индий, используемый для этой цели, практически не содержит примесей: выражаясь языком химиков, его чистота- «шесть девяток», т. е. 99,9999%! Некоторые соединения индия (сульфид, селенид, антимонид, фосфид) сами являются полупроводниками; их применяют для изготовления термоэлементов и других приборов. Антимонид индия, например, служит основой инфракрасных детекторов, способных «видеть» в темноте даже едва нагретые предметы.

Индий оказался одним из немногих пока химических элементов, «командированных» в космос, чтобы вписать новые страницы в технологию неорганических материалов. В 1975 году, незадолго до начала совместного советско-американского космического полета по программе «Союз» — «Аполлон», командиры экипажей А. Леонов и Т. Стаффорд в беседе с корреспондентом ТАСС высказали свое мнение о значении предстоящих экспериментов на орбите. В частности, они затронули вопрос о технологических опытах по плавке металлов и выращиванию кристаллов различных веществ.

«Предстоит выяснить возможность использования невесомости и вакуума для получения новых материалов — металлических и полупроводниковых, — сказал А. Леонов. — По мнению советских и американских ученых, в космосе можно сплавлять компоненты, не смешиваемые на Земле, создавать жаропрочные материалы…» «Наши астронавты, — добавил Т. Стаффорд, — на борту орбитальной станции «Скайлэб» проводили опыты по выращиванию кристаллов антимонида индия.

Удалось получить кристалл самый чистый и самый прочный из всех, когда-либо искусственно полученных на Земле». А в 1978-1980 годах на борту советской орбитальной научной станции «Салют-6» были проведены новые технологические эксперименты, в которых «участвовали» индий и его соединения.

Опыты с соединениями индия ведут и на Земле. Так, недавно антимонид индия был подвергнут давлению в 30 тысяч атмосфер. Оказалось, что в результате\’ таких «крепких объятий» изменилась кристаллическая решетка вещества и при этом его электропроводность возросла в миллион раз!

Мировое производство индия пока очень мало — всего несколько десятков тонн в год. Обычно этот ценнейший металл получают как… побочный продукт при переработке руд цинка, свинца, меди, олова. Оригинальный способ получения индия разработали ученые ГДР. Они предложили добывать его из пыли, облака которой «украшали» небо над одним из предприятий по переработке медистых сланцев. Пыль, в которой среди прочих компонентов содержится индий, сначала промывается горячей серной кислотой, затем проходит долгий путь сложных превращений, в результате которых получается чистый индий.

Интерес к индию все время растет. Ученые стремятся как можно больше узнать об этом металле. Несколько лет назад физики США сумели заполнить еще один -пробел в характеристике индия, определив конфигурацию его ядра: оказалось, что оно напоминает… футбольный мяч с полоской по «экватору».

…В природе индий встречается редко, но можно с уверенностью утверждать, что в промышленном мире он с каждым годом будет становиться все более и более желанным гостем.

Индий - металл серебристо-белого цвета с сильным блеском, внешне сходный с цинком. По твердости близок к литию, легко режется ножом. Плотность индия 7.31 г/см3, плавится при температуре 156,5°C. При этом, подобно галлию, температура кипения на пару тысяч градусов выше температуры плавления - 2080°C.

По химическим свойствам похож на алюминий и галлий, поскольку эти металлы находятся в одной группе периодической системы химических элементов, но в целом в реакциях менее активен. Устойчив во влажной атмосфере, не растворяется в щелочах. Реагирует почти со всеми кислотами, медленно растворяется даже в слабых органических.

Индий относится к редким и рассеянным элементам, он не образует собственных месторождений и добывается в качестве побочного продукта при переработке руд других металлов. Для получения индия промышленное значение имеют только те минералы, в которых его содержится не меньше, чем 0,1%. Как правило, больше всего его в сфалерите (сульфид цинка), но и там его количество не превышает 0.5 %. Таким образом, производство индия всегда сопутствует производству цинка, в меньшей степени – олова и свинца. Схема извлечения индия при этом довольно сложная, поскольку металл не обладает отличительными химическими свойствами, которые могли бы помочь в его выделении отдельно от других металлов; при этом последовательно применяются такие методы как ионный обмен, экстракция, а также гидролитическое осаждение и цементация, использующие небольшие различия в степени гидролиза солей и стандартных потенциалах разных металлов. Образующийся на последней стадии черновой металл очищают различными методами, в частности зонной плавкой, позволяющей получить индий чистотой до 99.99999%.

Наиболее обширно используется индий и его соединения в технике: изготовление жидкокристаллических экранов (тонкая пленка из оксида индия-олова), микроэлектроника (примесь к германию и кремнию), уплотнитель в технике высокого вакуума (в частности, космических аппаратов), покрытие зеркал (в частности астрономических, где имеет значение постоянство коэффициента отражения в видимой части спектра), термоэлектрические материалы на основе арсенида индия, производство очень стабильных аккумуляторов с высокой удельной энергоёмкостью для специальных целей (система из оксида ртути и индия), покрытие некоторых элементов двигателей для снижения износа. Помимо этого, индий является важным компонентом припоев (вследствие высокой адгезии индия такая добавка позволяет спаивать металлы со стеклом и другими материалами), из его изотопов изготовляют радиофармацевтические препараты, его ортофосфат добавляют в зубные цементы, а ряд соединений индия обладает люминесцентными свойствами, что находит применение в различных областях. Также сплав индия (5%) с золотом и серебром используется в качестве декоративного металла (так называемое зеленое золото)

Таким образом, с развитием техники растет и потребление индия. При этом производство ЖК-экранов потребляет не менее половины от всего добываемого металла Производство первичного индия (от 500 до 800 тонн в год) время от времени догоняет потребность, что вызывает непостоянство цен. По некоторым оценкам, запасы природного индия будут исчерпаны к 2030 году, если не возрастет степень его вторичной переработки и повторного использования.

Индий (лат. Indium), In, химический элемент III группы периодической системы Менделеева; атомный номер 49, атомная масса 114,82; белый блестящий мягкий металл. Элемент состоит из смеси двух изотопов: 113 In (4,33%) и 115 In (95,67%); последний изотоп обладает очень слабой β-радиоактивностью (период полураспада T ½ = 6·10 14 лет).

В 1863 году немецкие ученые Ф. Райх и T. Рихтер при спектроскопическом исследовании цинковой обманки обнаружили в спектре новые линии, принадлежащие неизвестному элементу. По ярко-синей (цвета индиго) окраске этих линий новый элемент был назван Индий.

Распространение Индия в природе. Индий - типичный рассеянный элемент, его среднее содержание в литосфере составляет 1,4·10 -5 % по массе. При магматических процессах происходит слабое накопление Индия в гранитах и других кислых породах. Главные процессы концентрации Индия в земной коре связаны с горячими водными растворами, образующими гидротермальные месторождения. Индий связан в них с Zn, Sn, Cd и Pb. Сфалериты, халькопириты и касситериты обогащены Индием в среднем в 100 раз (содержание около l,4·10 -3 %). Известны три минерала Индия - самородный Индий, рокезит CuInS 2 и индит In 2 S 4 , но все они крайне редкие. Практическое значение имеет накопление Индия в сфалеритах (до 0,1%, иногда 1%). Обогащение Индия характерно для месторождений Тихоокеанского рудного пояса.

Физические свойства Индия. Кристаллическая решетка Индия тетрагональная гранецентрированная с параметрами а = 4,583Å и с= 4,936Å. Атомный радиус 1,66Å; ионные радиусы In 3+ 0,92Å, In + 1,30Å; плотность 7,362 г/см 3 . Индий легкоплавок, его t пл 156,2 °C; t кип 2075 °C. Температурный коэффициент линейного расширения 33·10 -6 (20 °С); удельная теплоемкость при 0-150°С 234,461 дж/(кг·К), или 0,056 кал/(г·° С); удельное электросопротивление при 0°C 8,2·10 -8 ом·м, или 8,2·10 -6 ом·см; модуль упругости 11 н/м 2 , или 1100 кгс/мм 2 ; твердость по Бринеллю 9 Мн/м 2 , или 0,9 кгс/мм 2 .

Химические свойства Индия. В соответствии с электронной конфигурацией атома 4d 10 5s 2 5p 1 Индий в соединениях проявляет валентность 1, 2 и 3 (преимущественно). На воздухе в твердом компактном состоянии Индий стоек, но окисляется при высоких температурах, а выше 800 °C горит фиолетово-синим пламенем, давая оксид In 2 O 3 - желтые кристаллы, хорошо растворимые в кислотах. При нагревании Индий легко соединяется с галогенами, образуя растворимые галогениды InCl 3 , InBr 3 , InI 3 . Нагреванием Индия в токе HCl получают хлорид InCl 2 , а при пропускании паров InCl 2 над нагретым In образуется InCl. С серой Индий образует сульфиды In 2 S 3 , InS; они дают соединения InS·In 2 S 3 и 3InS·In 2 S 3 . В воде в присутствии окислителей Индий медленно корродирует с поверхности: 4In + 3O 2 +6H 2 O = 4In(ОН) 3 . В кислотах Индий растворим, его нормальный электродный потенциал равен -0,34 в, в щелочах практически не растворяется. Соли Индия легко гидролизуются; продукт гидролиза - основные соли или гидрооксид In(OH) 3 . Последний хорошо растворим в кислотах и плохо - в растворах щелочей (с образованием солей - индатов): In(ОН) 3 + 3KOH = K 3 . Соединения Индия низших степеней окисления довольно неустойчивы; галогениды InHal и черный оксид In 2 O - очень сильные восстановители.

Получение Индия. Индий получают из отходов и промежуточных продуктов производств цинка, свинца и олова. Это сырье содержит от тысячных до десятых долей процента Индия. Извлечение Индия складывается из трех основные этапов: получение обогащенного продукта - концентрата Индия; переработка концентрата до чернового металла; рафинирование. В большинстве случаев исходное сырье обрабатывают серной кислотой и переводят Индий в раствор, из которого гидролитическим осаждением выделяют концентрат. Черновой Индий выделяют главным образом цементацией на цинке или алюминии. Рафинирование производят химическими, электрохимическими, дистилляционными и кристаллофизическими методами.

Применение Индия. Наиболее широко Индий и его соединения (например, нитрид InN, фосфид InP, антимонид InSb) применяют в полупроводниковой технике. Индий служит для различных антикоррозионных покрытий (в т. ч. подшипниковых). Индиевые покрытия обладают высокой отражательной способностью, что используется для изготовления зеркал и рефлекторов. Промышленное значение имеют некоторые сплавы Индий, в том числе легкоплавкие сплавы, припои для склеивания стекла с металлом и другие.

Элемент индий обладает многими полезными свойствами, благодаря которым его можно использовать в космонавтике, технике, электронике, атомной промышленности и других отраслях. Однако найти его в природе и отделить от других веществ чрезвычайно сложно. Из-за этого он числится в списке редких элементов. Какими свойствами обладает индий? Металл это или неметалл? Давайте узнаем обо всех его особенностях.

История открытия элемента

Индий был впервые обнаружен всего 154 года назад. Отчасти это произошло случайно, ведь его первооткрыватели искали совсем другой элемент. В 1863 году химики Теодор Рихтер и Фердинанд Райх пытались обнаружить в минерале сфалерите (цинковой обманке) таллий – новый на то время металл, который только предстояло изучить.

Для своих поисков они использовали спектральный анализ Кирхгофа и Бунзена. Суть метода состоит в том, что при нагревании до высоких температур атомы элементов начинают излучать свет, соответствующий конкретному диапазону частот. По спектру этого свечения можно выяснить, что за элемент перед вами. У таллия цвет должен быть ярко-зеленым, но вместо него ученые обнаружили голубое свечение. Ни один известный элемент не обладал таким спектром, и химики поняли, что им улыбнулась удача. Из-за особенностей оттенка свою находку они назвали в честь цвета индиго. Так и был обнаружен новый металл – индий. А теперь более подробно об особенностях.

Что это за металл?

Индий – светло-серебристый и очень блестящий металл, напоминающий цинк. В Периодической системе он относится к третьей группе, стоит под номером 49 и обозначается символом In. В природе он существует в виде двух изотопов: In113 и In115. Последний более распространен, но является радиоактивным. Какой период у металла индий 115? Он распадается за 6·1014 лет, превращаясь в олово. Существует также около 20 искусственных изотопов, которые распадаются гораздо быстрее. У наибольшего «долгожителя» среди них период полураспада составляет 49 дней.

Индий плавится при температуре +156,5 °C и кипит при +2072 °C. Он легко поддается ковке и другому механическому воздействию и вполне мог бы использоваться в ювелирных изделиях. Однако из-за высокой мягкости он быстро деформируется. Металл без труда можно согнуть, разрезать ножом и даже поцарапать ногтем.

Химические свойства

По своим химическим свойствам он похож на галлий или алюминий. Непрерывных твердых соединений он не может образовать ни с каким металлом. Он совершенно не реагирует с растворами щелочей. При определенных температурах вступает в реакцию с йодом, селеном, серой и ее диоксидом, реагирует с хлором и бромом. В индии запросто растворяются металлы, которые окружают его в Периодической системе, а именно: таллий, олово, галлий, свинец, висмут, ртуть, кадмий.

Несколько интересных фактов о металле индии: Даже при длительном пребывании не воздухе он не тускнеет. Не происходит это и при расплавлении металла. Если начать сгибать индий, то он издаст характерный звук, похожий на скрип или хруст. Он появляется от деформации кристаллической решетки вещества. Индий горит при +800 °С, пламя при этом окрашено в сине-фиолетовый цвет, или же цвет индиго. Это самый мягкий металл, который можно держать в руках. Превосходит его только литий, но он слишком активен и сразу же окисляется на воздухе, образуя ядовитую щелочь. Сплав индия с галлием является очень легкоплавким и становится жидким уже при +16 °C.

Металл индий не образует самостоятельных месторождений. Он очень рассеян и в виде самородков встречается крайне редко. Среди собственных минералов индия: сакуранит, рокезит, патрукит, джалиндит. Однако их редкость не позволяет применять их в промышленности. Небольшое количество индия встречается в морской и дождевой воде, в нефти, а также в золах каменного угля. Из-за схожести ионных радиусов индий способен встраиваться в кристаллические решетки железа, магния, цинка, свинца, маганца, олова и т. д. Благодаря этому его незначительное количество иногда обнаруживают вместе с ними. Как правило, содержание индия в минералах не превышает 0,05-1%. Больше всего металла содержится в сфалеритах и мармаритах. Обычно его концентрация тем выше, чем больше в них цинка, железа и других, уже названных металлов.

Цена металла

Индий уже через несколько лет после открытия удалось выделить в чистом виде. Из-за сложности этого процесса, один грамм индия тогда оценивался примерно в 700 долларов. И хотя за полтора столетия методы его получения значительно улучшились, он до сих пор считается редким и дорогим. Сегодня его средняя цена составляет 600-800 долларов за килограмм и, что удивительно, не сильно падает с увеличением объемов его добычи. Чистота металла обычно указывается в его маркировке: ИН-2, ИН-1, ИН-0, ИН-00, ИН-000, ИН-00000. Чем больше нулей, тем он качественнее и дороже. Например, индий марки ИН-000 может оцениваться в сумму около 2000 долларов за килограмм. Высокая стоимость металла индия объясняется и его низким содержанием в природе, и большим спросом. В год добывается 600-800 тонн, что абсолютно не покрывает всех потребностей в нем. Благодаря своим уникальным свойствам он оказывается гораздо лучше и долговечнее других, более дешевых металлов. Чтобы не терять столь ценный материал, во многих странах его используют вторично.

Где применяют

Металл индий повышает смачиваемость и стойкость сплава к коррозии. Им покрывают свинцово-серебряные подшипники, которые используют в авиационной и автомобильной технике. Он также способен понижать температуру плавления других металлов. Так, его смесь с оловом, свинцом, кадмием и висмутом плавится при 46,5 °С, благодаря чему используется для пожарной сигнализации. Окись индия и олова применяется для полупроводников и различных припоев. Кроме того, ее используют для изготовления компьютерных мониторов, экранов телевизоров и планшетов. В сплаве с серебром или самостоятельно он применяется для астрономических зеркал и зеркал автомобильных фар.

Он отлично подходит для создания фотоэлементов, люминофоров, термоэлектрических материалов, уплотнителей в космической технике. Индий хорошо поглощает нейтроны и может использоваться в атомных реакторах. О биологической роли этого элемента в нашем организме ничего не известно, однако его научились использовать и в медицине. Его применяют как радиоактивный препарат при диагностировании печени, мозга и легких для обнаружения опухолей и других заболеваний.

Способы получения

Основное количество металла индия добывают из цинковых и оловянных месторождений. Его получают из отходов от переработки полиметаллических, оловянных, свинцово-цинковых руд. Отделение и очищение индия проводится в несколько стадий.

Сначала его осаждают при помощи регулирования уровня кислотности раствора. Полученный «черновой металл» затем нужно очистить. Делают это путем рафинирования зонной плавкой или другими способами. На сегодняшний день одним из главных производителей индия является Канада. Кроме нее, большие объемы металла добывают США, Китай, Япония, Южная Корея. Однако запасы этого элемента очень ограничены, предполагается, что они иссякнут в течение нескольких десятков лет.

Открытие металла индий произошло случайно в 1863 году в Германии. Химики Фердинанд Рейх и Теодор Рихтер пытались обнаружить таллий в цинковых минералах, добытых в Саксонии. Они прибегали к методу спектроскопического исследования. Но вместо зеленой линии характерной таллию, в спектре цинкового минерала Теодор Рихтер увидел синюю линию. Ни один из элементов, известных на тот момент, не мог давать такого спектра. Открытый элемент решено было назвать индий, по сходству с красителем «индиго». Позже они получили чистый металл, но в очень малых объемах, и представили учёному сообществу. Здесь нужно отметить вклад Д.И. Менделеева, который поправил первооткрывателей по поводу валентности и атомной массы.

Индий – трехвалентный элемент с атомной массой 114,82. В периодической таблице находится в главной подгруппе третьей группы пятого периода и обозначается символом In. Металл индий относится к легким металлам. Имеет серебристо-белый цвет, ковкий, очень мягкий (можно резать ножом). По химическим свойствам индий ближе к галлию и алюминию. Температура плавления равна 156,5 °С. Индий является побочным продуктом переработки руд цинка, олова, свинца или меди. Он крайне редко встречается в виде самородков. Основными индиевыми минералами являются джалинид, рокезит и индит. Металл индий – яркий представитель рассеянных элементов.

С развитием электротехнической отрасли, индий приобретает все большую популярность и становится в ряд дефицитных материалов. Его использование активно развивалось в производстве подшипников. Добавление индия улучшает коррозийную устойчивость и смачиваемость подшипника. Это свойство используют в механизмах с трущимися металлами. Индий здесь выступает в качестве смазки. Позднее, с развитием полупроводниковой техники, металл индий получил новый виток своего применения. Его используют как добавку в производстве сенсорных экранов, солнечных батарей, аккумуляторов. Индий выступает как компонент в ряде легкоплавких припоев. Его применяют в атомной отрасли. Он незаменим при производстве специальных зеркал и многих других отражающих элементов.

На сегодняшний момент металл индий все более широко входит в промышленное производство многих технически сложных продуктов. Его применение ограничивает лишь его малая доля в природе. Несмотря на это, интерес к индию с каждым годом только растет.