Азотная кислота важнейшие свойства и применение. Азотная кислота и нитраты

Независимо от концентрации окислителем в азотной кислоте являются нитратионы NO, содержащие азот в степени окисления +5. Поэтому при взаимодействии металлов с азотной кислотой водород не выделяется. Азотная кислота окисляет все металлы за исключением самых неактивных (благородных). При этом образуются соль, вода и продукты восстановления азота (+5): NH−3 4 NO 3 , N 2 , N 2 O, NO, НNО 2 , NO 2 . Свободный аммиак не выделяется, так как он взаимодействует с азотной ки-слотой, образуя нитрат аммония:

NH 3 + HNO 3 = NH 4 NO 3

При взаимодействии металлов с концентрированной азотной кислотой (30–60 % HNO 3) продуктом восстановления HNO 3 является преимущественно оксид азота (IV), независимо от природы металла, например:

Mg + 4HNO 3 (конц.) = Mg(NO 3) 2 + 2NO 2 + 2H 2 O

Zn + 4HNO 3 (конц.) = Zn(NO 3) 2 + 2NO 2 + 2H 2 O

Hg + 4HNO 3 (конц.) = Hg(NO 3) 2 + 2NO 2 + 2H 2 O

Металлы переменной валентности при взаимодействии с концентрированной азотной кислотой окисляются до высшей степени окисления. При этом те металлы, которые окисляются до степени окисления +4 и выше, образуют кислоты или оксиды. Например:

Sn + 4HNO 3 (конц.) = H 2 SnO 3 + 4NO 2 + H 2 O

2Sb + 10HNO 3 (конц.) = Sb 2 O 5 + 10NO 2 + 5H 2 O

Мо + 6HNO 3 (конц.) = H 2 МоO 4 + 6NO 2 + 2H 2 O

В концентрированной азотной кислоте пассивируются алюминий, хром, железо, никель, кобальт, титан и некоторые другие металлы. После обработки азотной кислотой эти металлы не взаимодействуют и с другими кислотами.

При взаимодействии металлов с разбавленной азотной кислотой продукт её восстановления зависит от восстановительных свойств металла: чем активнее металл, тем в большей степени восстанавливается азотная кислота.

Активные металлы восстанавливают разбавленную азотную кислоту максимально, т.е. образуются соль, вода и NH 4 NO 3 , например:

8K + 10HNO 3 (разб.) = 8КNO 3 + NН 4 NO 3 + 3H 2 O

Металлы средней активности при взаимодействии с разбавленной азотной кислотой образуют соль, воду и азот или N 2 O. Чем левее металл в этом интервале (чем ближе к алюминию), тем вероятнее образование азота, например:

5Мn + 12HNO 3 (разб.) = 5Mn(NO 3) 2 + N 2 + 6H 2 O

4Cd + 10HNO 3 (разб.) = 4Cd(NO 3) 2 + N 2 O + 5H 2 O

Малоактивные металлы при взаимодействии с разбавленной азотной кислотой образуют соль, воду и оксид азота (II), например:

3Сu + 8HNO 3 (разб.) = 3Cu(NO 3) 2 + 2NO + 4H 2 O

Но уравнения реакций в данных примерах условны, так как в действительности получается смесь соединений азота, причем, чем выше активность металла и ниже концентрация кислоты, тем ниже степень окисления азота в том продукте, которого образуется больше других.



6. Взаимодействие металлов с «царской водкой»

«Царской водкой» называется смесь концентрированных азотной и соляной кислот. Она применяется для окисления и перевода в растворимое состояние золота, платины и других благородных металлов.

Соляная кислота в царской водке затрачивается на образование комплексного соединения окисленного металла. Из сравнения полуракций 29 и 30 с полуреакциями 31–32 (табл. 1) видно, что при образовании комплексных соединений золота и платины окислительно-восстановительный потенциал уменьшается, что делает возможным их окисление азотной кислотой. Уравнения реакций золота и платины с «царской водкой» записываются так:

Au + HNO 3 + 4HCl = H + NO + 2H 2 O

3Pt + 4HNO 3 + 18HCl = 3H 2 + 4NO + 8H 2 O

С «царской водкой» не взаимодействуют три металла: вольфрам, ниобий и тантал. Их окисляют смесью концентрированной азотной кислоты с фтороводородной, так как фтороводородная кислота образует более прочные комплексные соединения, чем соляная. Уравнения реакций при этом таковы:

W + 2HNO 3 + 8HF = H 2 + 2NO + 4H 2 O

3Nb + 5HNO 3 + 21HF = 3H 2 + 5NO + 10H 2 O

3Ta + 5HNO 3 + 24HF = 3H 3 + 5NO + 10H 2 O

В некоторых учебных пособиях встречается другое объяснение взаимодействия благородных металлов с «царской водкой». Считают, что в этой смеси между HNO 3 и HCl происходит катализируемая благо-родными металлами реакция, в которой азотная кислота окисляет соляную по уравнению:

HNO 3 + 3HCl = NOCl + 2H 2 O

Хлорид нитрозила NOCl непрочен и разлагается по уравнению:

NOCl = NO + Cl(атомарный)

Таким образом, окислителем металла является атомарный (т.е. очень активный) хлор в момент выделения. Поэтому продуктами взаимодействия царской водки с металлами являются соль (хлорид), вода и оксид азота (II):

Au + HNO 3 + 3HCl = AuCl 3 + NO + 2H 2 O

3Pt + 4HNO 3 + 12HCl = 3PtCl 4 + 4NO + 8H 2 O,

а комплексные соединения образуются при последующих реакциях:

HCl + AuCl 3 = H; 2HCl + PtCl 4 = H 2

Азотная кислота HNO 3 - бесцветная жидкость, имеет резкий запах, легко испаряется. При попадании на кожу азотная кислота может вызвать сильные ожоги (на коже образуется характерное желтое пятно, его сразу же следует промыть большим количеством воды, а затем нейтрализовать содой NaHCO 3)


Азотная кислота

Молекулярная формула: HNO 3 , B(N) = IV, С.О. (N) = +5

Атом азота образует 3 связи с атомами кислорода по обменному механизму и 1 связь - по донорно-акцепторному механизму.

Физические свойства

Безводная HNO 3 при обычной температуре - бесцветная летучая жидкость со специфическим запахом (т. кип. 82,6"С).


Концентрированная «дымящая» HNO 3 имеет красный или желтый цвет, так как разлагается с выделением NO 2 . Азотная кислота смешивается с водой в любых соотношениях.

Способы получения

I. Промышленный - 3-стадийный синтез по схеме: NH 3 → NO → NO 2 → HNO 3


1 стадия: 4NH 3 + 5O 2 = 4NO + 6H 2 O


2 стадия: 2NO + O 2 = 2NO 2


3 стадия: 4NO 2 + O 2 + 2H 2 O = 4HNO 3


II. Лабораторный - длительное нагревание селитры с конц. H 2 SO 4:


2NaNO 3 (тв.) +H 2 SO 4 (конц.) = 2HNO 3 + Na 2 SO 4


Ba(NO 3) 2 (тв) +H 2 SO 4 (конц.) = 2HNO 3 + BaSO 4

Химические свойства

HNO 3 как сильная кислота проявляет все общие свойства кислот

HNO 3 → H + + NO 3 -


HNO 3 - очень реакционноспособное вещество. В химических реакциях проявляет себя как сильная кислота и как сильный окислитель.


HNO 3 взаимодействует:


а) с оксидами металлов 2HNO 3 + CuO = Cu(NO 3) 2 + H 2 O


б) с основаниями и амфотерными гидроксидами 2HNO 3 + Cu(OH) 2 = Cu(NO 3) 2 + 2H 2 O


в) с солями слабых кислот 2HNO 3 + СaСO 3 = Ca(NO 3) 2 + СO 2 + H 2 O


г) с аммиаком HNO 3 + NH 3 = NH 4 NO 3

Отличие HNO 3 от других кислот

1. При взаимодействии HNO 3 с металлами практически никогда не выделяется Н 2 , так как ионы H + кислоты не участвуют в окислении металлов.


2. Вместо ионов H + окисляющее действие оказывают анионы NO 3 - .


3. HNO 3 способна растворять не только металлы, расположенные в ряду активности левее водорода, но и малоактивные металлы - Си, Аg, Нg. В смеси с HCl растворяет также Au, Pt.

HNO 3 - очень сильный окислитель

I. Окисление металлов:


Взаимодействие HNO 3: а) с Me низкой и средней активности: 4HNO 3 (конц.) + Сu = 2NO 2 + Cu(NO 3) 2 + 2H 2 O


8HNO 3 (разб.) + ЗСu = 2NO + 3Cu(NO 3) 2 + 4H 2 O


б) с активными Me: 10HNO 3 (разб.) + 4Zn = N 2 O + 4Zn(NO 3) 2 + 5H 2 O


в) с щелочными и щелочноземельными Me: 10HNO 3 (оч. разб.) + 4Са = NH 4 NO 3 + 4Ca(NO 3) 2 + 3H 2 O


Очень концентрированная HNO 3 при обычной температуре не растворяет некоторые металлы, в том числе Fe, Al, Cr.


II. Окисление неметаллов:


HNO 3 окисляет Р, S, С до их высших С.О., сама при этом восстанавливается до NO (HNO 3 разб.) или до NO 2 (HNO 3 конц).


5HNO 3 + Р = 5NO 2 + H 3 PO 4 + H 2 O


2HNO 3 + S = 2NO + H 2 SO 4


III. Окисление сложных веществ:


Особенно важными являются реакции окисления сульфидов некоторых Me, которые не растворяются в других кислотах. Примеры:


8HNO 3 + PbS = 8NO 2 + PbSO 4 + 4H 2 O


22HNO 3 + ЗСu 2 S = 10NO + 6Cu(NO 3) 2 + 3H 2 SO 4 + 8H 2 O

HNO 3 - нитрующий агент в реакциях органического синтеза

R-Н + НО-NO 2 → R-NO 2 + H 2 O



С 2 Н 6 + HNO 3 → C 2 H 5 NO 2 + H 2 O нитроэтан


С 6 Н 5 СН 3 + 3HNO 3 → С 6 Н 2 (NO 2) 3 СН 3 + ЗH 2 O тринитротолуол


С 6 Н 5 ОН + 3HNO 3 → С 6 Н 5 (NO 2) 3 OH + ЗH 2 O тринитрофенол

HNO 3 этерифицирует спирты

R-ОН + НO-NO 2 → R-O-NO 2 + H 2 O



С 3 Н 5 (ОН) 3 + 3HNO 3 → С 3 Н 5 (ONO 2) 3 + ЗH 2 O тринитрат глицерина

Разложение HNO 3

При хранении на свету, и особенно при нагревании, молекулы HNO 3 разлагаются за счет внутримолекулярного окисления-восстановления:


4HNO 3 = 4NO 2 + O 2 + 2H 2 O


Выделяется красно-бурый ядовитый газ NO 2 , который усиливает агрессивно-окислительные свойства HNO 3

Соли азотной кислоты - нитраты Me(NO 3) n

Нитраты - бесцветные кристаллические вещества, хорошо растворяются в воде. Имеют химические свойства, характерные для типичных солей.


Отличительные особенности:


1) окислительно-восстановительное разложение при нагревании;


2) сильные окислительные свойства расплавленных нитратов щелочных металлов.

Термическое разложение

1. Разложение нитратов щелочных и щелочноземельных металлов:


Me(NO 3) n → Me(NO 2) n + O 2


2. Разложение нитратов металлов, стоящих в ряду активности металлов от Mg до Cu:


Me(NO 3) n → Ме x О y + NO 2 + O 2


3. Разложение нитратов металлов, стоящих в ряду активности металлов превее Cu:


Me(NO 3) n → Ме + NO 2 + O 2


Примеры типичных реакций:


1) 2NaNO 3 = 2NaNO 2 + O 2


2) 2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2


3) 2AgNO 3 = 2Ag + 2NO 2 + O 2

Окислительное действие расплавов нитратов щелочных металлов

В водных растворах нитраты, в противоположность HNO 3 , почти не проявляют окислительной активности. Однако расплавы нитратов щелочных металлов и аммония (селитр) являются сильными окислителями, поскольку разлагаются с выделением активного кислорода.

Азотная кислота

HNO 3



Опытным путём доказано, что в молекуле азотной кислоты между двумя атомами кислорода и атомом азота две химические связи абсолютно одинаковые – полуторные связи. Степень окисления азота +5, а валентность равна IV.

Физические свойства

Азотная кислота HNO 3 в чистом виде - бесцветная жидкость с резким удушливым запахом, неограниченно растворимая в воде; t°пл.= -41°C; t°кип.= 82,6°С, r = 1,52 г/см 3 . В небольших количествах она образуется при грозовых разрядах и присутствует в дождевой воде.

N 2 + O 2 грозовые эл.разряды→ 2NO 2NO + O 2 → 2NO 2

Под действием света азотная кислота частично разлагается с выделением NО 2 и за cчет этого приобретает светло-бурый цвет:

4НNО 3 свет→ 4NО 2 (бурый газ) + 2Н 2 О + О 2

Азотная кислота высокой концентрации выделяет на воздухе газы, которые в закрытой бутылке обнаруживаются в виде коричневых паров (оксиды азота). Эти газы очень ядовиты, так что нужно остерегаться их вдыхания. Азотная кислота окисляет многие органические вещества. Бумага и ткани разрушаются вследствие окисления образующих эти материалы веществ. Концентрированная азотная кислота вызывает сильные ожоги при длительном контакте и пожелтение кожи на несколько дней при кратком контакте. Пожелтение кожи свидетельствует о разрушении белка и выделении серы (качественная реакция на концентрированную азотную кислоту – жёлтое окрашивание из-за выделения элементной серы при действии кислоты на белок – ксантопротеиновая реакция). То есть – это ожог кожи. Чтобы предотвратить ожог, следует работать с концентрированной азотной кислотой в резиновых перчатках.

Получение

1. Лабораторный способ KNO 3 + H 2 SO 4 (конц) → KHSO 4 + HNO 3 (при нагревании) 2. Промышленный способ Осуществляется в три этапа: a) Окисление аммиака на платиновом катализаторе до NO 4NH 3 + 5O 2 → 4NO + 6H 2 O (Условия: катализатор – Pt, t = 500˚С) б) Окисление кислородом воздуха NO до NO 2 2NO + O 2 → 2NO 2 в) Поглощение NO 2 водой в присутствии избытка кислорода 4NO 2 + О 2 + 2H 2 O ↔ 4HNO 3

Химические свойства

1. Очень сильная кислота. Диссоциирует в водном растворе практически нацело:

HNO 3 = H+ + NO 3 -

Реагирует:

2. с основными оксидами

CuO + 2HNO 3 = Cu(NO 3 ) 2 + H 2 O

CuO + 2H + + 2NO 3 - = Cu 2+ + 2NO 3 - + H 2 O

или CuO + 2H + = Cu 2+ + H 2 O

3. с основаниями

HNO 3 + NaOH = NaNO 3 + H 2 O

H + + NO 3 - + Na + + OH - = Na + + NO 3 - + H 2 O

или H + + OH - = H 2 O

4. вытесняет слабые кислоты из их солей


2HNO 3 + Na 2 CO 3 = 2NaNO 3 + H 2 O + CO 2

2H + + 2NO 3 - + 2Na + + СO 3 2- = 2Na + + 2NO 3 - + H 2 O + CO 2

2H + + СO 3 2- = H 2 O + CO 2

Специфические свойства азотной кислоты

Сильный окислитель

1. Разлагается на свету и при нагревании


4HNO 3 = 2H 2 O + 4NO 2 + O 2

Азотная кислота

Азо́тная кислота́ (HNO 3), — сильная одноосновная кислота. Твёрдая азотная кислота образует две кристаллические модификации смоноклинной и ромбической решётками.

Азотная кислота смешивается с водой в любых соотношениях. В водных растворах она практически полностью диссоциирует на ионы. Образует с водой азеотропную смесь с концентрацией 68,4 % и t кип 120 °C при атмосферном давлении. Известны два твёрдых гидрата: моногидрат (HNO 3 ·H 2 O) и тригидрат (HNO 3 ·3H 2 O).

Химические свойства

Высококонцентрированная HNO 3 имеет обычно бурую окраску вследствие происходящего на свету процесса разложения:

При нагревании азотная кислота распадается по той же реакции. Азотную кислоту можно перегонять (без разложения) только при пониженном давлении (указанная температура кипения при атмосферном давлении найдена экстраполяцией).

Золото, некоторые металлы платиновой группы и тантал инертны к азотной кислоте во всём диапазоне концентраций, остальные металлы реагируют с ней, ход реакции при этом определяется её концентрацией.

HNO 3 как сильная одноосновная кислота взаимодействует:

а) с основными и амфотерными оксидами:

б) с основаниями:

в) вытесняет слабые кислоты из их солей:

При кипении или под действием света азотная кислота частично разлагается:

Азотная кислота в любой концентрации проявляет свойства кислоты-окислителя, при этом азот восстанавливается до степени окисления от +4 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты. Как кислота-окислитель, HNO 3 взаимодействует:

а) с металлами, стоящими в ряду напряжений правее водорода:

Концентрированная HNO 3

Разбавленная HNO 3

б) с металлами, стоящими в ряду напряжений левее водорода:

Все приведенные выше уравнения отражают только доминирующий ход реакции. Это означает, что в данных условиях продуктов данной реакции больше, чем продуктов других реакций, например, при взаимодействии цинка с азотной кислотой (массовая доля азотной кислоты в растворе 0,3) в продуктах будет содержаться больше всего NO, но также будут содержаться (только в меньших количествах) и NO 2 , N 2 O, N 2 и NH 4 NO 3 .

Единственная общая закономерность при взаимодействии азотной кислоты с металлами: чем более разбавленная кислота и чем активнее металл, тем глубже восстанавливается азот:

Увеличение концентрации кислоты увеличение активности металла

Продукты взаимодействия железа с HNO 3 разной концентрации

С золотом и платиной азотная кислота, даже концентрированная не взаимодействует. Железо, алюминий, хром холодной концентрированной азотной кислотой пассивируются. С разбавленной азотной кислотой железо взаимодействует, причем в зависимости от концентрации кислоты образуются не только различные продукты восстановления азота, но и различные продукты окисления железа:

Азотная кислота окисляет неметаллы, при этом азот обычно восстанавливается до NO или NO 2:

и сложные вещества, например:

Некоторые органические соединения (например амины и гидразин, скипидар) самовоспламеняются при контакте с концентрированной азотной кислотой.

Азотная кислота

Некоторые металлы (железо, хром, алюминий, кобальт, никель, марганец, бериллий), реагирующие с разбавленной азотной кислотой, пассивируются концентрированной азотной кислотой и устойчивы к её воздействию.

Смесь азотной и серной кислот носит название «меланж». Благодаря наличию амила достигается концентрация в 104 % [источник не указан 150 дней ] (то есть при добавлении к 100 частям меланжа 4 частей дистиллята концентрация остаётся на уровне 100 %, вследствие поглощения воды амилом [источник не указан 150 дней ]).

Азотная кислота широко используется для получения нитросоединений.

Смесь трех объёмов соляной кислоты и одного объёма азотной называется «царской водкой». Царская водка растворяет большинство металлов, в том числе золото и платину. Её сильные окислительные способности обусловлены образующимся атомарным хлором ихлоридом нитрозила:

Нитраты

HNO 3 — сильная кислота. Её соли — нитраты — получают действием HNO 3 на металлы, оксиды, гидроксиды или карбонаты. Все нитраты хорошо растворимы в воде.

Соли азотной кислоты — нитраты — при нагревании необратимо разлагаются, продукты разложения определяются катионом:

а) нитраты металлов, стоящих в ряду напряжений левее магния:

2NaNO 3 = 2NaNO 2 + O 2

б) нитраты металлов, расположенных в ряду напряжений между магнием и медью:

4Al(NO 3) 3 = 2Al 2 O 3 + 12NO 2 + 3O 2

в) нитраты металлов, расположенных в ряду напряжений правее ртути:

2AgNO 3 = 2Ag + 2NO 2 + O 2

г) нитрат аммония:

NH 4 NO 3 = N 2 O + 2H 2 O

Нитраты в водных растворах практически не проявляют окислительных свойств, но при высокой температуре в твердом состоянии нитраты — сильные окислители, например:

Fe + 3KNO 3 + 2KOH = K 2 FeO 4 + 3KNO 2 + H 2 O — при сплавлении твердых веществ.

Цинк и алюминий в щелочном растворе восстанавливают нитраты до NH 3:

Соли азотной кислоты — нитраты — широко используются как удобрения. При этом практически все нитраты хорошо растворимы в воде, поэтому в виде минералов их в природе чрезвычайно мало; исключение составляют чилийская (натриевая) селитра и индийская селитра (нитрат калия). Большинство нитратов получают искусственно.

С азотной кислотой не реагируют стекло, фторопласт-4.

Исторические сведения

Методика получения разбавленной азотной кислоты путём сухой перегонки селитры с квасцами и медным купоросом была, по видимому, впервые описана трактатах Джабира(Гебера в латинизированных переводах) в VIII веке. Этот метод с теми или иными модификациями, наиболее существенной из которых была замена медного купоросажелезным, применялся в европейской и арабской алхимии вплоть до XVII века.

В XVII веке Глаубер предложил метод получения летучих кислот реакцией их солей с концентрированной серной кислотой, в том числе и азотной кислоты из калийной селитры, что позволило ввести в химическую практику концентрированную азотную кислоту и изучить её свойства. Метод Глаубера применялся до начала XX века, причём единственной существенной модификацией его оказалась замена калийной селитры на более дешёвую натриевую (чилийскую) селитру.

Во времена М. В. Ломоносова, азотную кислоту называли крепкой водкой.

Промышленное производство, применение и действие на организм

Азотная кислота является одним из самых крупнотоннажных продуктов химической промышленности.

Производство азотной кислоты

Современный способ её производства основан на каталитическом окислении синтетического аммиака на платино-родиевых катализаторах (процесс Оствальда) до смесиоксидов азота (нитрозных газов), с дальнейшим поглощением их водой

4NH 3 + 5O 2 (Pt) → 4NO + 6H 2 O 2NO + O 2 → 2NO 2 4NO 2 + O 2 + 2H 2 O → 4HNO 3 .

Концентрация полученной таким методом азотной кислоты колеблется в зависимости от технологического оформления процесса от 45 до 58 %. Впервые азотную кислоту получили алхимики, нагревая смесь селитры и железного купороса:

4KNO 3 + 2(FeSO 4 · 7H 2 O) (t°) → Fe 2 O 3 + 2K 2 SO 4 + 2HNO 3 + NO 2 + 13H 2 O

Чистую азотную кислоту получил впервые Иоганн Рудольф Глаубер, действуя на селитру концентрированной серной кислотой:

KNO 3 + H 2 SO 4 (конц.) (t°) → KHSO 4 + HNO 3

Дальнейшей дистилляцией может быть получена т. н. «дымящая азотная кислота», практически не содержащая воды.

: моногидрат (HNO 3 ·H 2 O) и тригидрат (HNO 3 ·3H 2 O).

Физические и физико-химические свойства

Фазовая диаграмма водного раствора азотной кислоты.

Азот в азотной кислоте четырёхвалентен , степень окисления +5. Азотная кислота — бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C с частичным разложением. Растворимость азотной кислоты в воде не ограничена. Водные растворы HNO 3 с массовой долей 0,95-0,98 называют «дымящей азотной кислотой», с массовой долей 0,6-0,7 — концентрированной азотной кислотой. С водой образует азеотропную смесь (массовая доля 68,4 %, d 20 = 1,41 г/см, T кип = 120,7 °C)

При кристаллизации из водных растворов азотная кислота образует кристаллогидраты:

  • моногидрат HNO 3 ·H 2 O, T пл = −37,62 °C
  • тригидрат HNO 3 ·3H 2 O, T пл = −18,47 °C

Твёрдая азотная кислота образует две кристаллические модификации:

  • моноклинная , пространственная группа P 2 1 /a, a = 1,623 нм, b = 0,857 нм, c = 0,631, β = 90°, Z = 16;

Моногидрат образует кристаллы ромбической сингонии , пространственная группа P na2, a = 0,631 нм, b = 0,869 нм, c = 0,544, Z = 4;

Плотность водных растворов азотной кислоты как функция её концентрации описывается уравнением

где d — плотность в г/см³, с — массовая доля кислоты. Данная формула плохо описывает поведение плотности при концентрации более 97 %.

Химические свойства

Высококонцентрированная HNO 3 имеет обычно бурую окраску вследствие происходящего на свету процесса разложения:

При нагревании азотная кислота распадается по той же реакции. Азотную кислоту можно перегонять (без разложения) только при пониженном давлении (указанная температура кипения при атмосферном давлении найдена экстраполяцией).

в) вытесняет слабые кислоты из их солей:

При кипении или под действием света азотная кислота частично разлагается:

Азотная кислота в любой концентрации проявляет свойства кислоты-окислителя, при этом азот восстанавливается до степени окисления от +4 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты. Как кислота-окислитель, HNO 3 взаимодействует:

Нитраты

Азотная кислота является сильной кислотой. Её соли — нитраты — получают действием HNO 3 на металлы, оксиды , гидроксиды или карбонаты . Все нитраты хорошо растворимы в воде. Нитрат-ион в воде не гидролизуется.

Соли азотной кислоты при нагревании необратимо разлагаются, причём состав продуктов разложения определяется катионом:

а) нитраты металлов, стоящих в ряду напряжений левее магния:

б) нитраты металлов, расположенных в ряду напряжений между магнием и медью :

в) нитраты металлов, расположенных в ряду напряжений правее :

Нитраты в водных растворах практически не проявляют окислительных свойств, но при высокой температуре в твердом состоянии являются сильными окислителями, например, при сплавлении твердых веществ:

Исторические сведения

Методика получения разбавленной азотной кислоты путём сухой перегонки селитры с квасцами и медным купоросом была, по видимому, впервые описана трактатах Джабира (Гебера в латинизированных переводах) в VIII веке . Этот метод с теми или иными модификациями, наиболее существенной из которых была замена медного купороса железным , применялся в европейской и арабской алхимии вплоть до XVII века .

В XVII веке Глаубер предложил метод получения летучих кислот реакцией их солей с концентрированной серной кислотой, в том числе и азотной кислоты из калийной селитры , что позволило ввести в химическую практику концентрированную азотную кислоту и изучить её свойства. Метод