Что значит период полураспада йода 131. Радиоактивные изотопы, образующиеся при делении(Дайджест)

вопрос:
Содержание йода-131 больше нормы в тысячу раз! Что это значит?

Как понимать сообщения СМИ о йоде-131 (радиойод), цезии-137, стронции-90 - о ядерной катастрофе Фукусима АЭС

Радионуклидная рыба, мясо и рис - бюрократу на стол

а) Бюрократы всех мастей и всех стран (частные, государственные, политические) прикрываются бессмысленными цифрами, а "просто так" они этого бы не делали.
б) Для нормализации радиационой обстановки поднимаются "нормы".
в) Содержание долговременно опасных радионуклидов еще выше.

При разрушении реактора "мирного атома" и хранилищ ОЯТ на самом деле опасны для человеческой популяции не короткоживущий йод-131, а долгоживущие радиоактивные уран, плутоний, стронций, нептуний, америций, кюрий, углерод(14!), водород(3!) и т.п. радионуклиды, потому что природными и человеческими усилиями радиоактивные живые организмы, продукты питания, вода распространяется по всему Земному шару.

Радионуклиды - йод, цезий, стронций - являются продуктами радиоактивного распада (деления) в "топливных стержнях", или в том, что от них осталось - груде металлолома, озере-расплаве, пропитке грунта или скального основания.

Член совета Центра экологической политики России, соруководитель Программы по радиационной и ядерной безопасности Валерий Меньщиков:
"Все выводится, кроме плутония. Главное – сразу не помереть", – оптимистично заметил Валерий Меньщиков.
(2)

Обратите внимание на тот факт, что йод - это короткоживущий и выводимый из организма радиоизотоп.

Йод-131 (I-131) - период полураспада 8 дней, активность 124000 кюри/г. В следствии короткого времени жизни, йод представляет особую опасность в течении нескольких недель и опасность в несколько месяцев. Удельное образование йода-131 - примерно 2% от продуктов при взрыве бомбы деления (уран-235 и плутоний). Йод-131 легко поглощается телом, в особенности щитовидной железой.

А вот более долговременно-опасные (отдёжкой на складе радиоактивность которых не вгонишь в норму):

Цезий-137 (Cs-137) - время полураспада 30 лет, активность 87 кюри/г. Он представляет опасность в первую очередь как долговременный источник сильного гамма-излучения. Цезий, как щелочной металл, имеет некоторое сходство с калием и распределяется равномерно по всему телу. Он может выводиться из организма - период его полувыведения около 50-100 дней.

Стронций-89 (St-89) - период полураспада 52 дня (активность 28200 кюри/г). Стронций-89 представляет опасность в течении нескольких лет после взрыва. Поскольку стронций химически ведет себя подобно кальцию, он поглощается и накапливается в костях. Хотя большая его часть и выводится из организма (период полувыведения около 40 дней), чуть менее 10% стронция попадает в кости, период полувыведения из которых - 50 лет.

Стронций-90 (St-90) - период полураспада 28,1 года (активность 141 кюри/г), стронций-90 остается в опасных концентрациях на столетия. Помимо излучение бета-частицы, распадающийся атом стронция-90 превращается в изотоп иттрия - иттрий-90, тоже радиоактивный, с периодом полураспада 64,2 часа. Стронций накапливается в костях.
(1)

Нептуний-236 (Np-236) - период полураспада 154 тысячи лет.
Нептуний-237 (Np-237) - период полураспада 2,2 миллиона лет.
Нептуний-238, Нептуний-239 - соответственно 2,1 и 2,33 дня.
60-80 процентов нептуния откладывается в костях, а радиобиологический период полувыведения нептуния из организма составляет 200 лет. Это приводит к серьёзному радиационному поражению костной ткани.
Предельно допустимые количества изотопов нептуния в организме: 237Np - 0,06 мккюри (100 мкг), 238Np, 239Np - 25 мккюри (10−4 мкг).
Нептуний образуется из изотопов урана (в том числе и урана-238), а результатом распада нептуния является плутоний-238.
(3)

Плутоний, также как и нептуний, накапливается в костях и при поступлении извне. В радиоактивной смеси, поступающей с реакторов АЭС, разумеется, присутствует и полоний-210.
.

Похоже, что радиологическая разведка делается радиационного заражения местности (если вообще делается) как при "чистом мгновенном" ядерном взрыве, когда боеприпас весит несколько тонн, и в ядерную реакцию вступает, вероятно, более 10% урана и плутония из сотни-другой килограммов расщепляющихся материалов. В случае же атомного реактора АЭС всё с точностью до наоборот - тысячи тонн отработанного и полу-отработанного ядерного топлива, сотни тысяч тонн радиоактивных материалов реакторов, воды, грунтов - в которых долгоживущие столетиями радиоактивные элементы.

То есть, из оценки загрязнения АЭС методами "по йоду", я делаю вывод, это просто попытка скрыть действительно долговременные опасности от выброшенных в окружающую среду ядерных материалов с длительными периодами полураспада, которые действительно могут попасть в пищу и воду конкретному человеку.

Какой может быть состав радиоактивных как минимум тысяч тонн материалов - останков атомного реактора и окружающих его конструкций и грунтов?

Нигде не встречал попыток анализа состава разрушенного атомного реактора, ни по радиоизотопному составу, ни по химическому. И уж тем более, не встречал попыток сделать некую модель происходящих ядерных процессов. Вероятно, это строго секретные данные, что означает, что данных попросту не существует.

Поэтому придётся пользоваться очень косвенными данными из ненадёжных источников.

"Иод-131 является весомым продуктом деления урана, плутония и, косвенно, тория, составляя до 3 % продуктов деления ядер.
Иод-131 является дочерним продуктом β−-распада нуклида 131Te".
Это из Википедии.

Но нас интересуют цифры не по отношению к "продуктам деления ядер", а к общей массе радиоактивных материалов. Раз йод (очень летучий и химически активный элемент) оказался в атмосфере и воде, то и остальным радионуклидам в окружающую среду путь открыт.

Период полураспада (half-life) радиойода-131 8,02 суток, т.е. за 192 часа и 30 минут радиоактивного йода в образце становится меньше в 2 раза, из йода образуется стабильный (нерадиоактивный) ксенон почти такой же массы.

Сколько времени путешествовал радиоактивный йод от точки образования до точки измерения - неизвестно. То есть, модель связи концентрации йода с концентрациями других радиоизотов в околореаторной среде построить невозможно.

А какова концентрация в окружающей среде действительно долговременных особо-опасных при усвоении организмом радионуклидов?

Ясно одно, что массовая доля йода-131 должна быть в тысячи-сотни тысяч раз меньше, породившей его долгоживущей радиоактивной смеси останков урановых топливных ядерного реактора, конструкций и пород массой в тысячи тонн.

"Продукты деления, выпадающие из облака взрыва, представляют собой смесь примерно 80 изотопов 35 химических элементов средней части периодической системы элементов Менделеева (от цинка №30 до гадолиния №64). Почти все образующиеся ядра изотопов перегружены нейтронами, являются не стабильными и претерпевают бетта-распад с испусканием гамма-квантов. Первичные ядра осколков деления в последующем испытывают в среднем 3-4 распада и в итоге превращаются в стабильные изотопы. Таким образом, каждому первоначально образовавшемуся ядру (осколку) соответствует своя цепочка радиоактивных превращений."
(1)

Смею уверить, что и при ядерном распаде ядерного взрыва, и в топливных стержнях АЭС происходят те же ядерные реакции, только пропорции иные - в реакторах АЭС трансурановых радионуклидов больше. "Уран и трансурановые элементы остеотропны (накапливаются в костной ткани). Если плутоний откладывается в костях, время его полувыведения около 80-100 лет, т.е. он остается там практически навсегда. Так же, плутоний накапливается в печени, с периодом полувыведения 40 лет. Максимальная допустимая концентрация Pu-239 в организме 0,6 микрограмма (0,0375 микрокюри) и 0,26 микрограмма (0,016 микрокюри) для легких." (1)

При разрушении реактора "мирного атома" и хранилищ ОЯТ на самом деле опасны для человеческой популяции не короткоживущий йод-131, а долгоживущие уран, плутоний, стронций, нептуний, америций, кюрий, углерод(14!), водород(3!) и т.п. радионуклиды, потому что природными и человеческими усилиями радиоактивные живые организмы, продукты питания, вода распространяется по всему Земному шару.


Другая сторона вопроса радиоактивности:

Лекарственная форма:  

капсулы

Состав:

На капсулу:

Действующее вещество :

Йод-131 0,5; 1,0; 2,0; 4,0 ГБк (в виде натрия йодида ).

Вспомогательные веществ а:

Натрия дифосфат 237 мг.

Капсула (размер 1) (корпус: диоксид титана - 2,00 %, желатин - до 100 %;

крышечка: диоксид титана - 1,33 %, краситель солнечный закат желтый - 0,44 %, желатин - до 100 %)

Описание:

Твердая желатиновая капсула (размер 1), состоящая из корпуса белого цвета и крышечки оранжевого цвета. Содержимое капсулы - порошок белого цвета.

Фармакотерапевтическая группа: Радиофармацевтическое терапевтическое средство АТХ:  

V.09.F.X Прочие радиофармацевтические препараты для диагностики заболеваний щитовидной железы

Фармакодинамика:

Физико-химические свойства

Натрия йодид, 131 I - препарат получают нанесением раствора натрия йодида, 131 I на натрия дифосфат, находящийся в капсуле. Активность йода-131 составляет 0,5; 1,0; 2,0; 4,0 ГБк на установленную дату и время поставки препарата. Иод-131 распадается с периодом полураспада 8,02 суток; наиболее интенсивная составляющая гамма-излучения имеет энергию 365,0 кэВ (81,7 %), β -излучения - 606,0 кэВ (89,7%).

Фармакодинамика

Капсула, введенная натощак через рот с 25-30 мл дистиллированной воды, растворяется в желудке, в среднем, в течение 15 мин, натрия йодид, 131 I поступает в кровь с периодом полувыведения из полости желудка 8-10 мин. В дальнейшем радиоактивный йод-131 накапливается преимущественно в щитовидной железе.

Радиоактивный йод-131 избирательно захватывается щитовидной железой и за счет Р- излучения, обладающего коротким пробегом частиц, вызывает деструкцию клеток при минимальном воздействии на окружающие здоровые ткани.

Фармакокинетика:

Кинетика поглощения йода-131 щитовидной железой (относительно введенного количества) составляет, в среднем, через 2 часа - 10%, через 4 часа - 19%, через 24 часа - 27%. В течение суток около 60 % препарата выводится с мочой и калом. Значения величин накопления и скорости выведения препарата зависят от функционального состояния щитовидной железы и возраста и пола пациента.

Показания:

Препарат используется для лечения тиреотоксикоза при диффузном и многоузловом токсическом зобе, а также для лечения рака щитовидной железы и его метастазов.

Противопоказания:

Гиперчувствительность, узловой зоб, загрудинный зоб, эутиреоидный зоб, легкие формы тиреотоксикоза, смешанный токсический зоб, нарушения гемопоэза (лейкопоэза и тромбоцитопоэза), выраженный геморрагический синдром, язвенная болезнь желудка и 12- перстной кишки (в стадии обострения), беременность, период лактации, возраст до 20 лет.

С осторожностью: Возраст от 20 до 40 лет. Способ применения и дозы:

Препарат "Натрия йодид, 131 I" предназначен для приема внутрь.

Для лечения дифференцированного рака щитовидной железы, а также отдаленных метастазах. Лечение осуществляется через 3-4 недели после тиреоидэктомии или отмены L -тироксина за 20 дней до введения препарата. Капсула вводится через рот из расчета 37 МБк на килограмм массы тела, и больные переводятся в специализированные палаты, которые оборудованы автономной системой вентиляции и канализации, соединенной со специальными очистными сооружениями. Пациентов выводят из "закрытого" режима при снижении мощности гамма-излучения до допустимой нормами радиационной безопасности (ЗмкЗв/ч).

Величина разовой лечебной активности йода-131 для взрослых составляет 37 - 56 МБк из расчета на килограмм массы тела. Продолжительность интервалов между введениями препарата составляет 3 - 6 месяцев.

Для лечения тиреотоксикоза при диффузном и многоузловом токсическом зобе . Радиоактивный йод-131 захватывается только тканью щитовидной железы, вызывая деструкцию клеток, выводится мочой при минимальном воздействии на окружающие здоровые ткани.

В настоящее время существует два наиболее распространенных способа расчета вводимой активности йода-131.

1. Индивидуальный расчет на основании объема щитовидной железы, скорости захвата йода-131 в ходе проведения диагностического сканирования через 24 ч после приема препарата и заданной активности на грамм ткани (диапазон от 0,1 до 0,3 МБк/г) по формуле:

А в = Аз x V / С х 10, где

А 3 - заданная активность, МБк/г; V - объем щитовидной железы, см 3 ; С - скорость захвата йода-131 через 24 ч после введения препарата 10 - коэффициент.

2. Назначение фиксированной активности йода-131:

190 МБк - маленькие железы,

380 МБк - железы среднего размера,

570 МБк - крупные железы

Перед началом лечения необходимо предварительное определение поглощения йода-131 щитовидной железой, что гарантирует правильность лечения, исключает возможность ошибки, связанной с использованием фиксированной активности у больного с крупной, но плохо поглощающей йод-131 железой.

При лечебном применения препарата обязательным условием является постоянный контроль за состоянием периферической крови.

Лучевые нагрузки на органы и ткани пациента при использовании препарата "Натрия йодид, 131 I" .

Поглощенная доза, мГр/МБк

красный костный мозг

мочевой пузырь

поджелудочная железа

селезенка

тонкая кишка

щитовидная железа

Эквивалентная доза, мЗв/МБк

Побочные эффекты:

При лечении тиреотоксикоза и метастазов рака щитовидной железы возможны обострения тиреотоксикоза, возникновение гипотиреоза и микседемы, появление или усиление экзофтальма, радиотиреоидиты, тошнота, рвота, тромбоцитопения, лейкопения, острый гастрит, аменорея, язвенный цистит, паротит, алопеция, реактивные изменения со стороны кожи в области щитовидной железы, слизистой оболочки глотки и гортани. Лечение - симптоматическое.

При применении препарата возможно угнетение костномозгового кроветворения, восстановление которого проводится известными средствами: лейкоген, метилурацил, .

Передозировка:

Передозировка препарата маловероятна в связи с тщательным контролем вводимой активности в условиях специализированного стационара.

Взаимодействие:

В используемых дозировках взаимодействие с другими лекарственными средствами не отмечалось.

Особые указания:

Лечение данным препаратом (радиотерапия) должно проводиться под наблюдением врача-радиолога в специализированных отделениях, имеющих спецканализацию или условия для сбора и хранения радиоактивных мочи и кала, в соответствии с "Основными санитарными правилами обеспечения радиационной безопасности" (ОСПОРБ-99/20Ю), "Нормами радиационной безопасности" (НРБ-99/2009) и "Г игиеническими требованиями по обеспечению радиационной безопасности при проведении лучевой терапии с помощью открытых радионуклидных источников" (СанПиН 2.6.1.2368-08).

Влияние на способность управлять трансп. ср. и мех.: не описано Форма выпуска/дозировка:

Капсулы с активностью 0,5; 1,0; 2,0; 4,0 ГБк на установленную дату и время поставки. Допустимое отклонение значений активности йода-131 в каждой капсуле от номинала ± 10 %.

Упаковка: По 1 капсуле помещают во флаконы для лекарственных средств из стекла 1-го гидролитического класса вместимостью 10 или 15 мл, герметически укупоренные пробками резиновыми медицинскими и обжатые колпачками алюминиевыми. Флакон, паспорт, инструкцию по применению помещают в комплект упаковочный транспортный для радиоактивных веществ. Условия хранения:

При температуре от 15 до 25 °С. В соответствии с действующими "Основными санитарными правилами обеспечения радиационной безопасности" (ОСПОРБ - 99/2010).

Срок годности:

20 суток с даты изготовления. Не использовать после окончания срока годности.

Условия отпуска из аптек: Для стационаров Регистрационный номер: ЛСР-003509/07 Дата регистрации: 31.10.2007 / 25.12.2017 Дата окончания действия: Бессрочный Владелец Регистрационного удостоверения: ФГУП "Федеральный центр по проектированию и развитию объектов ядерной медицины" ФМБА России Россия Производитель:  

Россия

Дата обновления информации:   26.05.2018 Иллюстрированные инструкции При делении образуются разнообразные изотопы, можно сказать, половина таблицы Менделеева. Вероятность образования изотопов разная. Какие-то изотопы образуются с большей вероятностью, какие-то с гораздо меньшей (см. рисунок). Практически все они радиоактивные. Однако у большинства из них периоды полураспада очень маленькие (минуты или еще меньше) и они быстро распадаются в стабильные изотопы. Однако, среди них есть изотопы, которые с одной стороны охотно образуются при делении, а с другой имеют периоды полураспада дни и даже годы. Именно они представляют для нас основную опасность. Активность, т.е. количество распадов в единицу времени и соответственно количество "радиоактивных частиц", альфа и/или бета и/или гамма, обратно пропорциональна периоду полураспада. Таким образом, если есть одинаковое количество изотопов, активность изотопа с меньшим периодом полураспада будет выше, чем с большим. Но активность изотопа с меньшим периодом полураспада будет спадать быстрее, чем с большим. Йод-131 образуется при делении с приблизительно такой же "охотой" как и цезий-137. Но у йода-131 период полураспада "всего" 8 суток, а у цезия-137 около 30 лет. В процессе деления урана, по началу количество продуктов его деления, и йода и цезия растет, но вскоре для йода наступает равновесие – сколько его образуется, столько и распадается. С цезием-137, из-за его относительно большого периода полураспада, до этого равновесия далеко. Теперь, если произошел выброс продуктов распада во внешнюю среду, в начальные моменты из этих двух изотопов наибольшую опасность представляет йод-131. Во-первых, из-за особенностей деления его образуется много (см. рис.), во-вторых из-за относительно малого периода полураспада его активность высока. Со временем (через 40 дней) его активность упадет в 32 раза, и скоро практически его видно не будет. А вот цезий-137 поначалу может быть "светить" не так сильно, зато его активность будет спадать гораздо медленнее.
Ниже рассказано о самых "популярных" изотопах, которые представляют опасность при авариях на АЭС.

Радиоактивный йод

Среди 20 радиоизотопов йода, образующихся в реакциях деления урана и плутония, особое место занимают 131-135 I (T 1/2 = 8.04 сут.; 2.3 ч.; 20.8 ч.; 52.6 мин.; 6.61 ч.), характеризующиеся большим выходом в реакциях деления, высокой миграционной способностью и биологической доступностью.

В обычном режиме эксплуатации АЭС выбросы радионуклидов, в том числе радиоизотопов йода, невелики. В аварийных условиях, как свидетельствуют крупные аварии, радиоактивный йод, как источник внешнего и внутреннего облучения, был основным поражающим фактором в начальный период аварии.


Упрощенная схема распада йода-131. При распаде йода-131 образуются электроны с энергиями до 606 кэВ и гамма-кванты, в основном с энергиями 634 и 364 кэВ.

Основным источником поступления радиойода населению в зонах радионуклидного загрязнения были местные продукты питания растительного и животного происхождения. Человеку радиойод может поступать по цепочкам:

  • растения → человек,
  • растения → животные → человек,
  • вода → гидробионты → человек.

Молоко, свежие молочные продукты и листовые овощи, имеющие поверхностное загрязнение, обычно являются основным источником поступления радиойода населению. Усвоение нуклида растениями из почвы, учитывая малые сроки его жизни, не имеет практического значения.

У коз и овец содержание радиойода в молоке в несколько раз больше, чем у коров. В мясе животных накапливаются сотые доли поступившего радиойода. В значительных количествах радиойод накапливается в яйцах птиц. Коэффициенты накопления (превышение над содержанием в воде) 131 I в морских рыбах, водорослях, моллюсках достигает соответственно 10, 200-500, 10-70.

Практический интерес представляют изотопы 131-135 I . Их токсичность невелика по сравнению с другими радиоизотопами, особенно альфа-излучающими. Острые радиационные поражения тяжелой, средней и легкой степени у взрослого человека можно ожидать при пероральном поступлении 131 I в количестве 55, 18 и 5 МБк/кг массы тела. Токсичность радионуклида при ингаляционном поступлении примерно в два раза выше, что связано с большей площадью контактного бета-облучения.

В патологический процесс вовлекаются все органы и системы, особенно тяжелые повреждения в щитовидной железе, где формируются наиболее высокие дозы. Дозы облучения щитовидной железы у детей вследствие малой ее массы при поступлении одинаковых количеств радиойода значительно больше, чем у взрослых (масса железы у детей в зависимости от возраста равна 1:5-7 г., у взрослых – 20 г.).

Радиоактивный йод про радиоактивный йод содержатся гораздо подробные сведения, которые, в частности, могут быть полезны медицинским работникам.

Радиоактивный цезий

Радиоактивный цезий является одним из основных дозообразующих радионуклидов продуктов деления урана и плутония. Нуклид характеризуется высокой миграционной способностью во внешней среде, включаяпищевые цепочки. Основным источником поступления радиоцезия человеку являются продукты питания животного и растительного происхождения. Радиоактивный цезий, поступающий животным с загрязненным кормом, в основном накапливается в мышечной ткани (до 80 %) и в скелете (10 %).

После распада радиоактивных изотопов йода основным источником внешнего и внутреннего облучения является радиоактивный цезий.

У коз и овец содержание радиоактивного цезия в молоке в несколько раз больше, чем у коров. В значительных количествах он накапливается в яйцах птиц. Коэффициенты накопления (превышение над содержанием в воде) 137 Cs в мышцах рыб достигает 1000 и более, у моллюсков – 100- 700,
ракообразных – 50- 1200, водных растений – 100- 10000.

Поступление цезия человеку зависит от характера питания. Так после аварии на ЧАЭС в 1990 гю вклад различных продуктов в среднесуточное поступление радиоцезия в наиболее загрязненных областях Беларуси был следующим: молоко – 19 %, мясо – 9 %, рыба – 0.5 %, картофель – 46 %, овощи – 7.5 %, фрукты и ягоды – 5 %, хлеб и хлебопродукты – 13 %. Регистрируют повышенное содержание радиоцезия у жителей, потребляющих в больших количествах "дары природы" (грибы, лесные ягоды и особенно дичь).

Радиоцезий, поступая в организм, относительно равномерно распределяется, что приводит к практически равномерному облучению органов и тканей. Этому способствует высокая проникающая способность гамма-квантов его дочернего нуклида 137m Ba, равная примерно 12 см.

В исходной статье И.Я. Василенко, О.И. Василенко. Радиоактивный цезий про радиоактивный цезий содержатся гораздо подробные сведения, которые, в частности, могут быть полезны медицинским работникам.

Радиоактивный стронций

После радиоактивных изотопов йода и цезия следующим по значимости элементом, радиоактивные изотопы которого вносят наибольший вклад в загрязнение – стронций. Впрочем, доля стронция в облучении значительно меньше.

Природный стронций относится к микроэлементам и состоит из смеси четырех стабильных изотопов 84 Sr (0.56 %), 86 Sr (9.96 %), 87 Sr (7.02 %), 88 Sr (82.0 %). По физико-химическим свойствам он является аналогом кальция. Стронций содержится во всех растительных и животных организмах. В организме взрослого человека содержится около 0.3 г стронция. Почти весь он находится в скелете.

В условиях нормальной эксплуатации АЭС выбросы радионуклидов незначительны. В основном они обусловлены газообразными радионуклидами (радиоактивными благородными газами, 14 С, тритием и йодом). В условиях аварий, особенно крупных, выбросы радионуклидов, в том числе радиоизотопов стронция, могут быть значительными.

Наибольший практический интерес представляют 89 Sr
(Т 1/2 = 50.5 сут.) и 90 Sr
(Т 1/2 = 29.1 лет), характеризующиеся большим выходом в реакциях деления урана и плутония. Как 89 Sr, так и 90 Sr являются бета-излучателями. При распаде 89 Sr образуется стабильный изотоп итрия ( 89 Y) . При распаде 90 Sr образуется бета-активный 90 Y, который в свою очередь распадается с образованием стабильного изотопа циркония (90 Zr).


C хема цепочки распадов 90 Sr → 90 Y → 90 Zr. При распаде стронция-90 образуются электроны с энергиями до 546кэВ, при последующем распаде итрия-90 образуются электроны с энергиями до 2.28 МэВ.

В начальный период 89 Sr является одним из компонентов загрязнения внешней среды в зонах ближних выпадений радионуклидов. Однако у 89 Sr относительно небольшой период полураспада и со временем начинает превалировать 90 Sr.

Животным радиоактивный стронций в основном поступает с кормом и в меньшей степени с водой (около 2 %). Помимо скелета наибольшая концентрация стронция отмечена в печени и почках, минимальная – в мышцах и особенно в жире, где концентрация в 4–6 раз меньшая, чем в других мягких тканях.

Радиоактивный стронций относится к остеотропным биологически опасным радионуклидам. Как чистый бета-излучатель основную опасность он представляет при поступлении в организм. Населению нуклид в основном поступает с загрязненными продуктами. Ингаляционный путь имеет меньшее значение. Радиостронций избирательно откладывается в костях, особенно у детей, подвергая кости и заключенный в них костный мозг постоянному облучению.

Подробно все изложено в исходной статье И.Я. Василенко, О.И. Василенко. Радиоактивный стронций .

Рейтинг: / 29
Подробности Родительская категория: Зона отчуждения Категория: Радиоактивное загрязнение

Представлено последствия выброса радиоизотопа 131 I после аварии на ЧАЭС и описание биологического действия радиойода на организм человека.

Биологическое действие радиойода

Йод-131 - радионуклид с периодом полураспада 8.04 сут., бета- и гамма-излучатель. Вследствие высокой летучести практически весь йод-131, имевшийся в реакторе (7,3 МКи), был выброшен в атмосферу. Его биологическое действие связано с особенностями функционирования щитовидной железы . Ее гормоны - тироксин и трийодтирояин - имеют в своем составе атомы йода. Поэтому в норме щитовидная железа поглощает около 50% поступающего в организм йода. Естественно, железа не отличает радиоактивные изотопы йода от стабильных. Щитовидная железа детей в три раза активнее поглощает попавший в организм радиойод. Кроме того, йод-131 легко проникает через плаценту и накапливается в железе плода.

Накопление в щитовидной железе больших количеств йода-131 ведет к радиационному поражению секреторного эпителия и к гипотиреозу - дисфункции щитовидной железы. Возрастает также риск злокачественного перерождения тканей. Минимальная доза, при которой есть риск развития гипотиреоза у детей - 300 рад, у взрослых - 3400 рад. Минимальные дозы, при которых появляется риск развития опухолей щитовидной железы, находятся в диапазоне 10-100 рад. Наиболее велик риск при дозах 1200-1500 рад. У женщин риск развития опухолей в четыре раза выше, чем у мужчин, у детей в три-четыре раза выше, чем у взрослых.

Величина и скорость всасывания, накопление радионуклида в органах, скорость выведения из организма зависят от возраста, пола, содержания стабильного йода в диете и других факторов. В этой связи при поступлении в организм одинакового количества радиоактивного йода поглощенные дозы значительно различаются. Особенно большие дозы формируются в щитовидной железе детей, что связано с малыми размерами органа, и могу в 2-10 раз превышать дозы облучения железы у взрослых.

Профилактика поступления йода-131 в организм человека

Эффективно предотвращает поступление радиоактивного йода в щитовидную железу прием препаратов стабильного йода. При этом железа полностью насыщается йодом и отвергает попавшие в организм радиоизотопы. Прием стабильного йода даже через 6 ч после разового поступления 131 I может снизить потенциальную дозу на щитовидную железу примерно в два раза, но если отложить йодопрофилактику на сутки, эффект будет небольшим.

Поступление йода-131 в организм человека может произойти в основном двумя путями: ингаляционным, т.е. через легкие, и пероральным - через потребляемые молоко и листовые овощи.

Загрязнение окружающей среды 131 I после аварии на ЧАЭС

Интенсивное выпадение 131 I в городе Припять началось по-видимому, в ночь с 26 на 27 апреля. Поступление его в организм жителей города происходило ингаляционным путем, а следовательно - зависело от времени пребывания на открытом воздухе и от степени проветривания помещений.


Значительно серьезнее была обстановка в селах, попавших в зону радиоактивных выпадений. Вследствие неясности радиационной обстановки не всем сельским жителям была своевременно проведена йодная профилактика. Основным путем поступления 131 I в организм был пищевой, с молоком (до 60% по одним данным, по другим данным - до 90%). Этот радионуклид появился в молоке коров уже на вторые-третьи сутки после аварии. Надо отметить, что корова ежесуточно съедает на пастбище корм с площади 150 м 2 и является идеальным концентратором радионуклидов в молоке. 30 апреля 1986 г. Минздравом СССР были даны рекомендации о повсеместном запрете потребления молока от коров, находящихся на пастбищах, во всех районах, примыкающих к зоне аварии. В Белоруссии скот еще находился на стойловом содержании, но в Украине коровы уже паслись. На государственных предприятиях этот запрет сработал, а вот в личных хозяйствах запретные меры обычно срабатывают хуже. Надо отметить, что в Украине тогда около 30% молока потреблялось от личных коров. В первые же дни был установлен норматив на содержание йода-13I в молоке, при соблюдении которого доза на щитовидную железу не должна была превысить 30 бэр. В первые недели после аварии концентрация радиойода в отдельных пробах молока превышала этот норматив в десятки и сотни раз.

Представить масштабы загрязнения природной среды йодом-131 могут помочь такие факты. По существующим нормативам, если плотность загрязнения на пастбище достигает 7 Ки/км 2 , следует исключить или ограничить употребление в пищу загрязненных продуктов, перевести скот на незагрязненные пастбища или фуражные корма. На десятый день после аварии (когда прошел один период полураспада йода-131), под действие этого норматива попадали Киевская, житомирская и Гомельская области УССР, весь запад Белоруссии, Калининградская область, запад Литвы и северо-восток Польши.

Если плотность загрязнения лежит в пределах 0.7-7 Ки/км 2 , то решение следует принимать в зависимости от конкретной обстановки. Такие плотности загрязнения были почти по всей Правобережной Украине, по всей Белоруссии, Прибалтике, в Брянской и Орловской областях РСФСР, на востоке Румынии и Польши, юго-востоке Швеции и юго-западе Финляндии.

Неотложная помощь при загрязнении радиойодом.

При работе в зоне, загрязненной радиоизотопами иода, с целью профилактики прием ежедневно иодида калия 0,25 г (под врачебным присмотром). Дезактивация кожных покровов водой с мылом, промывание носоглотки и полости рта. При поступлении радионуклидов в организм – внутрь иодид калия 0,2 г, иодид натрия 02, г., сайодин 0,5 или тереостатики (перхлорат калия 0,25 г). Рвотные средства или промывание желудка. Отхаркивающие с повторным назначением йодистых солей и тереостатиков. Обильное питье, мочегонные.

Литература:

Чернобыль не отпускает… (к 50-летию радиоэкологических исследований в Республике Коми). – Сыктывкар, 2009 – 120 с.

Тихомиров Ф.А. Радиоэкология иода. М., 1983. 88 с.

Cardis et al., 2005 год. Risk of Thyroid Cancer After Exposure to 131I in Childhood -- Cardis et al. 97 (10): 724 -- JNCI Journal of the National Cancer Institute


Схема распада иода-131 (упрощённая)

Иод-131 (йод-131, 131 I) , также называемый радиойодом (несмотря на наличие других радиоактивных изотопов этого элемента), - радиоактивный нуклид химического элемента иода с атомным номером 53 и массовым числом 131. Период его полураспада составляет около 8 суток. Основное применение нашёл в медицине и фармацевтике. Также является одним из основных продуктов деления ядер урана и плутония, представляющих опасность для здоровья человека, внесших значительный вклад во вредные последствия для здоровья людей после ядерных испытаний 1950-х, аварии в Чернобыле . Иод-131 является весомым продуктом деления урана, плутония и, косвенно, тория , составляя до 3 % продуктов деления ядер.

Нормативы по содержанию иода-131

Лечение и профилактика

Применение в медицинской практике

Иод-131, как и некоторые радиоактивные изотопы иода (125 I, 132 I) применяются в медицине для диагностики и лечения заболеваний щитовидной железы . Согласно нормам радиационной безопасности НРБ-99/2009 , принятым в России, выписка из клиники пациента, лечившегося с использованием иода-131, разрешается при снижении общей активности этого нуклида в теле пациента до уровня 0,4 ГБк .

См. также

Примечания

Ссылки

  • Patient brochure on radioactive iodine treatment From the American Thyroid Association