Свойства нервных центров. Торможение в ЦНС

Нервный центр – совокупность нервных клеток (нейронов), необходимая для регуляции деятельности других нервных центров или исполнительных органов. Простейший нервный центр состоит из нескольких нейронов, образующих узел (ганглий). У высших животных и человека нервный центр включает тысячи и даже миллионы нейронов. Большинство функций организма обеспечивается рядом нервных центров, расположенных на различных уровнях центральной нервной системы (напр., нервный центр находится в промежуточном, и в коре ). Нервный центр – сложное сочетание нейронов, согласованно включающихся:

  • в регуляцию определенной функции;
  • в осуществление рефлекторного акта.

Клетки нервного центра связаны между собой синаптическими контактами и отличаются огромным разнообразием и сложностью внешней и внутренней тектоники. В зависимости от выполняемой функции различают:

  • чувствительные нервные центры;
  • нервные центры вегетативных функций;
  • двигательные нервные центры и др.

Понятие нервных центров

Нервный центр – центральный компонент рефлекторной дуги, где происходит переработка информации, вырабатывается программа действия, формируется эталон результата.

Анатомическое понятие “нервный центр” – это совокупность нейронов, располагающихся в строго определенных отделах центральной нервной системы и осуществляющих один . Например: центр коленного – в передних рогах 2-4 поясничных сегментов ; центр глотания – на уровне : 5, 7, 9 пары черепно-мозговых нервов.

Физиологическое понятие “нервный центр” – это совокупность нейронов, расположенных на различных уровнях центральной нервной системы и регулирующих сложный рефлекторный процесс. Например: центр глотания входит в состав пищевого центра.

Свойства нервных центров

Одностороннее проведение – возбуждение передается с афферентного на эфферентный . Причина: клапанное свойство синапса.

Задержка проведения возбуждения: скорость проведения возбуждения в нервном центре на много ниже таковой по остальным компонентам рефлекторной дуги. Чем сложнее нервный центр, тем дольше проходит по нему нервный импульс. Причина: синаптическая задержка. Время проведения возбуждения через нервный центр – центральное время рефлекса.

Суммация возбуждения – при действии одиночного подпорогового раздражителя ответной нет. При действии нескольких подпороговых раздражителей ответная реакция есть. Рецептивное поле рефлекса – зона расположения , возбуждение которых вызывает определенный рефлекторный акт.

Имеется 2 вида суммации: временная и пространственная.

Временная суммация – возникает ответная реакция при действии нескольких следующих друг за другом раздражителей. Механизм: суммируются возбуждающие постсинаптические потенциалы рецептивного поля одного рефлекса. Происходит суммация во времени потенциалов одних и тех же групп синапсов.

Пространственная суммация – возникновение ответной реакции при одновременном действии нескольких подпороговых раздражителей. Механизм: суммация возбуждающего постсинаптического потенциала от разных рецептивных полей. Суммируются потенциалы разных групп синапсов.

Центральное облегчение – объясняется особенностями строения нервного центра. Каждое афферентное волокно входя в нервный центр иннервирует определенное количество нервных клеток. Эти нейроны – нейронный пул. В каждом нервном центре много пулов. В каждом нейронном пуле – 2 зоны: центральная (здесь афферентное волокно над каждым нейроном образует достаточное для возбуждения количество синапсов), периферическая или краевая кайма (здесь количество синапсов недостаточно для возбуждения). При раздражении возбуждаются нейроны центральной зоны. Центральное облегчение: при одновременном раздражении 2-х афферентных нейронов ответная реакция может быть больше арифметической суммы раздражения каждого из них, т. к. импульсы от них отходят к одним и тем же нейронам периферической зоны.

Окклюзия – при одновременном раздражении 2-х афферентных нейронов ответная реакция может быть меньше арифметической суммы раздражения каждого из них. Механизм: импульсы сходятся к одним и тем же нейронам центральной зоны. Возникновение окклюзии или центрального облегчения зависит от силы и частоты раздражения. При действии оптимального раздражителя, (максимального раздражителя (по силе и частоте) вызывающего максимальную ответную реакцию) – появляется центральное облегчение. При действии пессимального раздражителя (с силой и частотой вызывающих снижение ответной реакции) – возникает явление окклюзии.

Посттетаническая потенция – усиление ответной реакции, наблюдается после серии нервных импульсов. Механизм: потенциация возбуждения в синапсах;

Рефлекторное последействие – продолжение ответной реакции после прекращения действия раздражителя:

  • кратковременное последействие – в течение нескольких долей секунды. Причина – следовая деполяризация нейронов;
  • длительное последействие – в течение нескольких секунд. Причина: после прекращения действия раздражителя возбуждение продолжает циркулировать внутри нервного центра по замкнутым нейронным цепям.

Трансформация возбуждения – несоответствие ответной реакции частоте наносимых раздражений. На афферентном нейроне происходит трансформация в сторону уменьшения из-за низкой лабильности синапса. На аксонах эфферентного нейрона, частота импульса больше частоты наносимых раздражений. Причина: внутри нервного центра образуются замкнутые нейронные цепи, в них циркулирует возбуждение и на выход из нервного центра импульсы подаются с большей частотой.

Высокая утомляемость нервных центров – связана с высокой утомляемостью синапсов.

Тонус нервного центра – умеренное возбуждение нейронов, которое регистрируется даже в состоянии относительного физиологического покоя. Причины: рефлекторное происхождение тонуса, гуморальное происхождение тонуса (действие метаболитов), влияние вышележащих отделов центральной нервной системы.

Высокий уровень обменных процессов и, как следствие, высокая в . Чем больше развиты нейроны, тем больше необходимо им кислорода. Нейроны проживут без кислорода 25-30 мин, нейроны ствола головного – 15-20 мин, нейроны коры головного мозга – 5-6 мин.

Нервный центр – это совокупность нейронов, обеспечивающих регуляцию какого-либо конкретного физиологического процесса или функции.

Нервный центр в узком смысле – это совокупность нейронов, без которых данная конкретная функция не может регулироваться. Например, без нейронов дыхательного центра продолговатого мозга дыхание прекращается. Нервный центр в широком смысле - это совокупность нейронов, которые участвуют в регуляции конкретной физиологической функции, но не являются строго обязательными для ее осуществления! Например, в регуляции дыхания кроме нейронов продолговатого мозга участвуют нейроны пневмотаксического центра варолиевого моста, отдельные ядра гипоталамуса, кора больших полушарий и другие образования головного мозга.

Все нейроны нервного центра разделяют на 2 неравные по количеству и качеству группы.

Первая группа – нейроны центральной зоны . Это наиболее возбудимые нейроны, которые возбуждаются в ответ на поступление порогового (для нервного центра) сигнала. Таких нейронов около 15-20%, и они не обязательно располагаются в середине нервного центра, как это изображено на рис.1. Особенностью их является то, что они имеют на своем теле больше синаптических терминалей от сенсорных и вставочных нейронов.

Вторая группа – нейроны подпороговой каймы. Это менее возбудимые нейроны, которые не возбуждаются в ответ на поступление пороговых им-пульсов, но при действии более сильных раздражителей они возбуждаются и включаются в работу нервного центра, обеспечивая ее усиление. Таких нейронов большинство (80-85%), и они не обязательно располагаются на периферии нервного центра, но все имеют значительно меньше синаптических терминалей от сенсорных и вставочных нейронов по сравнению с нейронами центральной зоны.

На рис. 1 нейроны центральной зоны условно поставлены в центр внутреннего круга (А), а нейроны подпороговой каймы – в пространство между внутренним и наружным кругами (Б). Таким образом, если к нервному центру по афферентному входу (В) придет пороговый импульс, то возбудятся три нейрона центральной зоны, а на десяти нейронах подпороговой каймы потенциалы действия не возникнут, но появится местная деполяризация – возбуждающий постсинаптический потенциал (ВПСП).



От структуры нервного центра зависят его свойства, а они, в свою очередь, влияют на процесс проведения возбуждения через нервный центр, на его скорость и степень выраженности. От свойств нервных центров во многом зависит процесс распространения возбуждения по ЦНС, что имеет важное значение в интегративной деятельности организма.

Свойства нервных центров обусловлены описанной выше нейронной организацией нервного центра, а также химическим способом передачи возбуждения в синапсах. При электрическом способе передачи возбуждения нервные центры не имели бы подобных свойств.

Свойства нервных центров: 1 одностороннее проведение возбуждения; 2 задержка проведения возбуждения; 3 суммация; 4 облегчение; 5 окклюзия; 6 мультипликация; 7 трансформация; 8 последействие; 9 посттетаническая потенциация; 10 утомление; 11 тонус; 12 высокая чувствительность к изменению состояния внутренней среды организма; 13 пластичность.

1) Свойство «одностороннее проведение возбуждения» прямо связано со структурно-функциональными особенностями синапса. В синапсе медиатор выделяется из пресинаптического аппарата и поступает на постсинаптическую мембрану, на которой находятся белки-рецепторы, чувствительные к этому медиатору (они закрывают различные ионные каналы на постсинаптической мембране). Следовательно, возбуждение через синапс, а значит, и через нервный центр проходит только в одну сторону.

2) Свойство «задержка проведения возбуждения» также связано с химическим способом передачи возбуждения в синапсах. В отличие от электрического, при этом способе на передачу возбуждения в синапсе, а значит, и в нервном центре затрачивается больше времени (выделение медиатора из пресинаптического аппарата, поступление его на постсинаптическую мембрану, контакт с белками-рецепторами и т.д.), чем на проведение возбуждения по нервному волокну. Русский физиолог А.Ф. Самойлов (1924) определил, что скорость проведения возбуждения по нервному волокну в 1,5 раза больше, чем через синапс. На основании этого факта ученый высказал предположение, что в основе проведения возбуждения по нервному волокну лежат физические процессы, а в основе синаптического способа передачи – химические.

Время проведения возбуждения («синаптическая задержка») через синапсы соматической нервной системы составляет 0,5-1 мс, а через синапсы вегетативной нервной системы – до 10 мс.

3) Суммация – это возникновение возбуждения в нервном центре при поступлении к нему нескольких допороговых импульсов, каждый из которых в отдельности не может возбуждения (рис. 2). Фактически этот процесс происходит на нейронах подпороговой каймы. Различают два вида суммации: пространственную и временною .

Пространственная суммация возникает в том случае, когда к нервному центру (к его нейронам) приходят одновременно, несколько допороговых импульсов. На рисунке 2А видно, что к нейрону подпороговой каймы, имеющему пороговый потенциал 30 мВ одновременно по пяти различным афферентным входам (их аксоны обозначены сплошной линией) приходят пять импульсов, каждый из которых деполяризует мембрану нейрона на 5 мВ (то есть возникают пять отдельных ВПСП). В этом случае возбуждение нейрона не наступает, так как суммарная деполяризация мембраны нейрона составляет лишь 25 мВ (суммированный ВПСП мал для достижения КУД). Но если к нейрону придет еще один подобный импульс по шестому входу (его аксон обозначен пунктирной линией), то суммированный ВПСП будет достаточен по величине и мембрана нейрона в зоне аксонного холмика деполяризуется до критического уровня, в результате чего нейрон из состояния покоя перейдет в состояние возбуждения. На постсинаптической мембране происходит суммация ВПСП в пространстве.

Временная (последовательная) суммация возникает в том случае, когда к нейронам нервного центра по одному афферентному входу приходит не один, а серия импульсов с очень небольшими по времени межимпульсными промежутками (рис. 2Б). Два механизма временной суммации:

1) интервалы между отдельными импульсами настолько малы, что за это время медиатор, выделившийся в синаптическую щель, не успевает полностью разрушиться и вернуться в пресинаптический аппарат. В этом случае возникает постепенное накопление медиатора до критического объема, необходимого для возникновения достаточного по амплитуде ВПСП, а значит, и для возникновения ПД;

2) интервалы между отдельными импульсами настолько малы, что возникший за это время на постсинаптической мембране ВПСП не успевает исчезнуть и усиливается за счет новой порции медиатора – суммируется. На постсинаптической мембране происходит суммация ВПСП во времени.

4) Облегчение – это увеличение количества возбужденных нейронов в нервном центре (по сравнению с ожидаемым) при одновременном поступлении к нему возбуждения не по одному, а по двум или более афферентным входам. На рис. 3 рассмотрен случай, когда при отдельном раздражении первого афферентного входа возбуждается только три нейрона центральной зоны (А), а на пяти нейронах подпороговой каймы (Б) возникают ВПСП. Если раздражать отдельно только второй афферентный вход, то возбуждены будут пять нейронов (Г), а четыре нейрона подпороговой каймы (Д) не возбудятся. Раздражая и первый, и второй афферентные входы одновременно (!), мы ожидаем вовлечения в процесс возбуждения восьми нейронов. И они, естественно, будут возбуждаться, но кроме них (сверх ожидания!) могут возбуждаться еще некоторые нейроны подпороговой каймы. Это произойдет потому, что один или несколько нейронов подпороговой каймы являются общими как для первого, так и для второго афферентных входов (в нашем случае это два нейрона, обозначенные буквой В), и при одновременном поступлении возбуждения к этим нейронам дни возбудятся за счет возникновения пространственной суммации.

5) Окклюзия – это уменьшение количества возбужденных нейронов в нервной центре (по сравнению с ожидаемым) при одновременном поступлении к нему возбуждения не по одному. а по двум или более афферентным входам (рис. 4).

На рис. 4 видно, что при поступлении возбуждения только по первому афферентному входу возбуждаются четыре нейрона, а при раздражении только второго афферентного входа – пять нейронов, так как и в том, и другом случае они относятся к центральным зонам. Понятно, что при одновре­менном поступлении возбуждения по первому и второму входам мы ожидаем увидеть девять возбужденных нейронов, но на самом деле таких нейронов будет только восемь. Это произойдет потому, что нейрон, обозначенный буквой В, является общим для обоих входов и по закону «все или ничего» будет возбуждаться в любом случае независимо от того, сколько пороговых импульсов к нему прилет одновременно.

6) Мультипликационное возбуждение (мультипликация ) заключается в том, что по разветвлениям аксона вставочного нейрона возбуждение поступает одновременно не на один, а на несколько моторных нейронов (рис. 6). В связи с этим эффект на рабочем органе усиливается в несколько раз, или в работу вовлекаются не одна, а несколько рабочих структур, Это свойство особенно ярко проявляется в ганглиях автономной (вегетативной) нервной системы.

7) Трансформация ритма возбуждения – это изменение частоты импульсов на выходе из нервного центра по сравнению с частотой импульсов на входе в нервный центр.

Частота импульсов на выходе из нервного центра может быть значительно меньше, чем на входе. Говоря техническим языком, это «понижающая трансформация». Подобное явление мы уже рассматривали выше («временная суммация»).

Частота импульсов на выходе из нервного центра может быть значительно выше, чем на входе («повышающая трансформация»). Это связано с особенностями взаимосвязи вставочных нейронов:

а) наличием дублирующих цепей вставочных нейронов, связывающих сенсорные и моторные нейроны;

б) разным количеством синапсов в каждой из этих цепей.

Например, на рис.7 представлены два варианта трансформации, которые, на первый взгляд, не отличаются друг от друга, так как в том и в другом случае показаны две дополнительные цепи вставочных нейронов (кроме прямого пути), с помощью которых возбуждение может передаваться по цепи нейронов А-Б-В. Рассмотрим эти схемы.

Вариант 1. Верхняя цепь состоит из двух дополнительных вставочных нейронов, а значит, по сравнению с прямым путем передачи возбуждения с нейрона Б на нейрон В, имеет два дополнительных синапса. Поэтому возбуждение, проходя по верхней цепи, задержится на 2 мс (время синаптической задержки в одном синапсе составляет ~1 мс) и придет на нейрон В после того, как пройдет возбуждение по прямому пути. В нижней цепи три дополнительных вставочных нейрона (то есть три дополнительных синапса), значит, возбуждение будет доходить до нейрона В еще дольше, чем по верхней цепи (задержка составит 3 мс). Следовательно, по нижней цепи возбуждение на нейрон В придет после того, как пройдет возбуждение по верхней цепи. В результате на один импульс, пришедший по сенсорному нейрону А, на моторном нейроне В возникнет три потенциала действия (трансформация 1:3).

Вариант 2. В этом случае и верхняя и нижняя цепи вставочных нейронов состоят из двух дополнительных нейронов. Возбуждение по обеим цепям придет к нейрону В одновременно в виде одного потенциала действие, который появится на нейроне В только после прохождения возбуждения к нему от нейрона Б по прямому пути. В этом варианте мы тоже получим трансформацию ритма, но уже в соотношении 1:2.

8) Последействие – это продолжение возбуждения моторного нейрона в течение некоторого времени после прекращения действия раздражителя.

Сущность механизма последействия заключается в том, что по разветвлениям аксона вставочного нейрона возбуждение распространяется на соседние вставочные нейроны и по ним возвращается на первоначальный вставочный нейрон. Возбуждение как бы «запирается» в нейронной ловушке и циркулирует в ней достаточно долго (рис. 8). Наличием таких нейронных ловушек объясняют, в частности, механизм кратковременной памяти.

Другими причинами последействия могут быть:

а) возникновение высокоамплитудного ВПСП, в результате которого возникает не один, а несколько потенциалов действия то есть ответ длится большее время;

б) длительная следовая деполяризация постсинаптической мембраны, в результате чего возникают несколько потенциалов действия, вместо одного.

9) Посттетаническая потенциация (синаптическое облегчение) – это улучшение проведения в синапсах после короткого раздражения афферентных путей.

Если в качестве контроля вызвать одиночное раздражение афферентного нерва тестирующим раздражителем (рис. 9А), то на моторном нейроне мы получим ВПСП вполне определенной амплитуды (в нашем случае 5 мВ). Если после этого тот же афферентный нерв раздражать некоторое время серией частых импульсов (рис. 9Б), а потом вновь подействовать тестирующим раздражителем (рис. 9В), то величина ВПСП будет больше (в нашем случае 10 мВ). Причем она будет тем больше, чем более частыми импульсами мы раздражали афферентный нерв.

Длительность синаптического облегчения зависит от свойств синапса и характера раздражения: после одиночных стимулов оно выражено слабо, после раздражающей серии потенциация (облегчение) может продолжаться от нескольких минут до нескольких часов. Объясняется он тем, что при частом раздражении афферентного волокна в его пресинаптической терминали (окончании) накапливаются ионы кальция, а значит, улучшается выделение медиатора. Кроме того, показано, что частое раздражение нерва приводит к усилению синтеза медиатора, мобилизации пузырьков медиатора, к усилению синтеза белков-рецепторов на постсинаптической мембране и увеличению их чувтствительности. Поэтому фоновая активность нейронов способствует возникновению возбуждения в нервных центрах.

10) Утомление нервного центра (посттетаническая депрессия, синаптическая депрессия) – это уменьшение или прекращение импульсной активности нервного центра в результате длительной стимуляции его афферентными импульсами (или произвольного вовлечения его в процесс возбуждения по­средством импульсов, идущих из коры больших полушарий). Причинами утомления нервного центра могут быть:

Истощение запасов медиатора в афферентном или вставочном нейроне;

Снижение возбудимости постсинаптической мембраны (то есть мембраны моторного или вставочного нейрона) из-за накопления, например, продуктов метаболизма.

Утомляемость нервных центров продемонстрировал Н.Е. Введенский в опыте на препарате лягушки при многократном рефлекторном вызове сокращения икроножной мышцы с помощью раздражения п. tibialis и п. peroneus. В этом случае ритмическое раздражение одного нерва вызывает ритмические сокращения мышцы, приводящие к ослаблению силы ее сокращения вплоть до полного отсутствия сокращения. Переключение раздражения на другой нерв сразу же вызывает сокращение той же мышцы, что свидетельствует о локализации утомления не в мышце, а в центральной части рефлекторной дуги. Синаптическая депрессия при длительной активации центра выражается в снижении постсинаптических потенциалов.

11) Тонус нервного центра – это длительное, умеренное возбуждение нервного центра без видимо утомления Причинами тонуса могут быть:

Потоки афферентных импульсов, постоянно поступающие с неадаптирующихся рецепторов;

Гуморальные факторы, постоянно присутствующие в плазме крови;

Спонтанная биоэлектрическая активность нейронов (автоматия);

Циркуляция (реверберация) импульсов в ЦНС.

12) Нервный центр состоит из нейронов, а они очень чувствительны к изменению состава внутренней среды организма , что и отражается на свойствах нервных центров. Наиболее важными факторами, влияющими на работу нервных центров, являются: гипоксия; недостаток питательных веществ (например, глюкозы); изменение температуры; воздействие продуктов метаболизма; воздействие различных токсических и фармакологических препаратов .

Разные нервные центры имеют неодинаковую чувствительность к воздействию названных факторов. Так, нейроны коры больших полушарий наиболее чувствительны к гипоксии, недостатку глюко­зы, продуктам метаболизма; клетки гипоталамуса – к изменению температуры, содержанию глюкозы, аминокислот, жирных кислот и др.; различные участки ретикулярной формации выключаются разными фармакологическими препаратами, различные нервные центры избирательно активируются или тормозятся разными медиаторами.

13) Пластичность нервного центра означает его способность изменять при определенных обстоятельствах свои функциональные свойства. В основе этого явления лежит поливалентность нейронов нервных центров. Особенно ярко проявляется это свойство при всевозможных повреждениях ЦНС, когда организм компенсирует утраченные функции за счет сохранившихся нервных центров. Особенно хорошо свойство пластичности выражено в коре больших полушарий. Например, центральные параличи, связанные с патологией двигательных центров коры, иногда полностью компенсируются, и ранее утраченные двигательные функции восстанавливаются.

Нервные центры обладают рядом характерных свойств , определяемых особенностями синаптического проведения нервных импульсов и струкурой нейронных цепей, образующих эти центры.

  1. . В нервном волокне импульсы могут проводиться в обоих направлениях. В центральной же нервной системе возбуждение может распространяться только в одном направлении: от рецепторного нейрона через промежуточные нейроны к эффекторному. Это явление получило название закона одностороннего проведения возбуждения в нервных центрах. Оно определяет направленность движения нервных импульсов, характерную для рефлекторной дуги.
  2. . В нервных центрах проведение возбуждения совершается значительно медленнее, чем в нервных волокнах. Этим объясняется относительная длительность времени рефлекса, т.е. времени от начала раздражения рецептора до появления ответной реакции. Это время называют также латентным периодом рефлекса.
  3. Зависимость рефлекторного ответа от силы и длительности раздражения . Рефлекторный ответ зависит от силы и длительности раздражения рецепторов. При усилении раздражения рецептивного поля увеличивается число возбужденных рецепторов и нервных волокон, по которым импульсы поступают в нервный центр, а следовательно, возрастает и число промежуточных и эффекторных нейронов, вовлекаемых в реакцию. Вместе с тем увеличивается частота нервных импульсов, возникающих в рецепторах и соответственно в каждом из нейронов, что также приводит к усилению рефлекса (усилению сокращения мышц, усилению секреции железы и т. д.). Увеличение продолжительности раздражения даже при постоянстве силы последнего в ряде случаев также ведет к усилению рефлекса за счёт вовлечения в реакцию новых нервных элементов.
  4. . Суммация возбуждений является характерным свойством нервных центров, впервые описанным И. М. Сеченовым в 1803 г. Она проявляется в том, что сочетание двух или нескольких раздражений перифорических рецепторов или афферентных нервов вызывает рефлекс, тогда как каждое из этих раздражений в отдельности недостаточно для вызова рефлекторной реакции. Различают два вида суммации: последовательную (временную) и пространственную.
  5. . Нервные центры способны трансформировать, т. е. изменять, ритм приходящих к ним импульсов. Поэтому частота импульсов, посылаемых центральной нервной системой к рабочему органу, относительно независима от частоты раздражении. В особенности резко проявляется трасформация ритма возбуждений нервными центрами при раздражении их одиночными стимулами.
  6. . Рефлекторные акты заканчиваются не одновременно с прекращением вызвавшего их раздражения, а через некоторый, иногда сравнительно длительный, период. Это явление получило название рефлекторного последействия.
  7. . В отличие от нервных волокон нервные центры легко утомляемы. Утомление нервного центра проявляется в постепенном снижении и в конечном итоге полном прекращении рефлекторного ответа при продолжительном раздражении афферентных нернных волокон.
  8. . Электрофизиологические исследования показывают, что не толькопри осуществлении того или иного рефлекса, но и в состоянии относительного покоя из нервных центров на периферию к соответствующим органам и тканям поступают разряды нервных импульсов.
  9. Зависимость функций нервных центров от снабжения их кислородом . Нервные клетки отличаются интенсивным потреблением кислорода. Так, 100 г ткани головного мозга собаки в 22 раза больше потребляют кислорода, чем 100 г мышечной ткани, находящейся в покое, и в 10 раз больше, чем 100 г печени. Мозг человека поглощает приблизительно 40-50 мл кислорода в минуту, что составляет примерно 1/6-1/8 часть всего количества кислорода, потребляемого телом в состоянии покоя. Потребляя большие количества кислорода, нервные клетки высокочувствительны к его недостатку. Поэтому уменьшение доставки кислорода к центральной нервной системе быстро влечет за собой нарушения функций центров. Этим объясняется тот факт, что полное или частичное прекращение кровообращения мозга (например, при тромбозе или разрыве кровеносного сосуда) ведет к тяжелым расстройствам деятельности нервной системы и к гибели нервных элементов. Даже кратковременная остановка мозгового кровообращения или кратковременное резкое падение явления в кровеносных сосудах головного мозга вызывает у человека немедленную потерю сознания. Особенно сильно страдают при прекращении кровоснабжения клетки коры больших полушарий головного мозга: уже через 5-6 минут они подвергаются необратимым изменениям и погибают. Центры ствола мозга менее чувствительны к недостатку кислорода: функция восстанавливается даже после 15-20 минут полного прекращения кровообращения. Центры спинного мозга еще более выносливы: функция может восстанавливаться даже через 20-30 минут полного кращения притока к ним крови. При гипотермии, т. е. искусственном понижении температуры тела, когда снижается обмен веществ организма, центральная нервная система дольше переносит недостаток кислорода.
  10. . Явление центрального торможения было открыто И. М. Сеченовым в 1862 г. Основной его опыт состоял в следующем. У лягушки делали разрез головного мозга на уровне зрительных бугров и удаляли большие полушария. После этого измеряли время рефлекса отдергивания задних лапок при погружении их в раствор серной кисл (методика Тюрка).

Специфическое действие некоторых ядов на центральную нервную систему

Нервные клетки и синапсы обладают избирательной чувствительностью к некоторым ядам. Поэтому последние называют нервными ядами. К их числу относится очень большое количество веществ самого различного химического строения: стрихнин, морфин, фенамин, кардиазол, наркотические вещества (эфир, хлороформ, барбитураты и пр.), алкоголь и многие другие.

Практически весьма важно, что некоторые вещества действуют преимущественно на определенные нервные центры. Так, апоморфин влияет более резко на рвотный, а лобелин - на дыхательный центр. Имеются вещества, действующие преимущественно на передачу возбуждения в ганглиях (ганглиоблокаторы).

Часто применяемый в физиологическом эксперименте стрихнин блокирует функцию тормозных синапсов и потому вызывает резкое повышение возбудимости центральной нервной системы, особенно спинного мозга. Вследствие этого животные, отравленные стрихнином, реагируют бурными рефлекторными судорогами всех скелетных мышц на любое раздражение.

Избирательная чувствительность к некоторым ядам нейронов и синапсов, локализующихся в отдельных участках центральной нервной системы, по-видимо указывает на своеобразие химических процессов, протекающих в них.

Имеются яды, влияющие на отдельные области больших полушарий, например кардиазол действует избирательно на двигательную зону больших полушарий, мескалин (алкалоид из мексиканского кактуса) оказывает влияние на зрительные центры головного мозга.

В последние два десятилетия обнаружены вещества, оказывающие значительное влияние на высшую нервную деятельность. Их изучением занимается специальность фармакологии - психофармакология.

Одностороннее проведение возбуждения. В нервных центрах прохождение импульсов возбуждения по цепи нейронов осуществляется только в одном направлении: от чувствительного нерва через промежуточные к двигательному, а от двигательного - к органу-исполнителю. Это обусловлено односторонней синаптической передачей импульсов от одной нервной клетки к другой с помощью медиатора, который выделяется концевым аппаратом аксона и содержится лишь в пресинаптической щели. В связи с этим поток нервных импульсов в рефлекторной дуге имеет определенное направление. Это свойство обеспечивает координирующую роль центральной нервной системы и способствует замыкательной функции условно-рефлекторных связей.
Замедление проведения возбуждения. Это свойство называется центральной задержкой, или латентным (скрытым) периодом рефлекса. Центральная задержка обусловлена более медленным проведением нервных импульсов через синапсы.
Интервал от начала раздражения рецептора до появления ответной реакции - 0,2–0,5 секунды. Чем сложнее рефлекс, тем длительнее центральная задержка. Дрессировщику необходимо учитывать скрытый период при выработке условного рефлекса и подкрепляющий раздражитель надо применять не раньше 0,5 секунды после воздействия сигнального раздражителя. Скрытый период рефлекса увеличивается при утомлении и заболевании животного.
Последействие. Присуще всем нервным центрам и характеризуется тем, что на короткое раздражение проявляется длительная ответная реакция, т. е. рефлекторный акт длится еще некоторое время после того, как раздражение рецептора прекращено. Такое последействие объясняется тем, что нервные импульсы от рецепторов поступают к двигательным центрам по различным нервным путям неодновременно: по коротким быстрее, чем по длинным. Запаздывающие импульсы поддерживают возбужденное состояние соответствующего нервного центра. Остаточное возбуждение в нервных центрах может сохраняться до 2 секунд и тем самым способствовать лучшей замыкательной функции при образовании условных рефлексов. Кроме того, в практике дрессировки нужно помнить, что после окончания действия любого раздражителя требуется некоторое время для спада остаточного возбуждения нервного центра и освобождения рефлекторных путей для новой рефлекторной деятельности.
Суммация. Происходит путем накопления слабых допороговых раздражений до критического потенциала, способного вызвать возбуждение нервного центра. Различают пространственную и временную суммацию. Пространственная суммация наблюдается в случае одновременного воздействия раздражителей допороговой силы на несколько чувствительных нейронов. Поступившие импульсы слабой силы суммируются в нервном центре и вызывают возбуждение. Суммация во времени происходит при активизации одного и того же чувствительного нейрона серией последовательных раздражений допороговой силы. Слабые импульсы от предыдущих раздражений накладываются друг на друга, суммируются и вызывают рефлекс. Суммация в пространстве и во времени в нервных центрах происходит одновременно. Они дополняют и усиливают друг друга и, например, увеличивают обонятельную и слуховую чувствительность у собаки, что так необходимо при работе по чутью, когда исключительно слабые раздражения запаховых частиц (1 молекула в одном литре воздуха) вызывают запаховые ощущения и соответствующие ответные реакции.
Трансформация. Свойство нервных центров изменять частоту и силу передающихся импульсов, т. е. трансформировать. Проявляется в активизации и перестройке нейронов на более высокий или более низкий ритм и изменении их лабильности, обеспечивает взаимодействие и установление связи между различными нервными центрами и другими отделами нервной системы, что имеет важное значение в замыкании условно-рефлекторных связей при дрессировке собак.
Облегчение. Свойство нервных центров обеспечивать высокую возбудимость и эффективность рефлекторной деятельности нервной системы. Сущность облегчения заключается в том, что после каждого раздражения в нервном центре повышается возбудимость к повторным раздражениям, следующим через небольшие промежутки времени. Один поток импульсов как бы облегчает действие другого и способствует образованию условного рефлекса.
Проторение. Способность одних нервных центров повышать возбудимость других и вступать во взаимодействие через обмен и передачу импульсов возбуждения между центрами по нейронным путям. Процесс образования временной связи рассматривается как результат взаимодействия двух очагов возбуждения в коре, следствием чего является проторение пути между этими корковыми пунктами. Проходимость пути обусловлена функциональными и морфологическими изменениями в синапсах.
Иррадиация возбуждения. При сильном и длительном раздражении импульсы, поступившие в нервную систему, не ограничиваются возбуждением одного рефлекторного центра, а распространяются на другие центры. Чем сильнее раздражение, тем больше нервных центров охватывает иррадиация. Возбуждение большого количества различных нервных центров позволяет отобрать из них наиболее нужные и установить между ними новые функциональные связи - условные рефлексы. Большинство двигательных условных рефлексов формируется благодаря иррадиации возбуждения. Излишняя иррадиация возбуждения центральной нервной системы нарушает уравновешенность поведенческих реакций, приводит к расстройству рефлекторной деятельности. Иррадиация возбуждения ограничивается и уравновешивается торможением.
Торможение. Тормозной процесс - необходимое условие в координации нервной деятельности. Торможение возникает в определенных нервных структурах под влиянием волны возбуждения, которая подавляет другое возбуждение. При торможении выключается деятельность ненужных в данный момент органов и предохраняется от чрезмерного перенапряжения работа нервных центров. В нервной системе вырабатываются тормозные условные рефлексы: прекращения нежелательных действий, выдержки, дифференцировки и др.
Доминанта. Преобладание активности одних нервных центров над активностью других.
Доминирующий (господствующий) очаг возникает при определенном функциональном состоянии нервных центров. Одно из условий его образования - повышенная возбудимость нервных клеток одного или нескольких нервных центров под влиянием определенных нервных и гуморальных факторов. Возбудимость доминирующего очага усиливается суммированием импульсов, поступающих из других нервных центров, рефлекторная деятельность которых подавляется, а рефлекторная деятельность доминирующего очага заметно усиливается. Установившееся доминирование при инстинктах может быть продолжительным состоянием, которое определяет поведение животного на тот или иной срок. Доминанту можно наблюдать и в условно-рефлекторной деятельности. Доминирующий очаг возбуждения в коре головного мозга притягивает к себе импульсы нервных центров других очагов возбуждения и тем самым способствует суммации, облегчению, проторению и замыканию условно-рефлекторных связей на сигналы дрессировщика. Доминанта по теории академика И. П. Павлова имеет главенствующее значение в механизме образования и проявления условных рефлексов. У собаки всегда сильно проявляются стойко выработанные навыки, доминирующие над другими рефлексами и обеспечивающие безотказное управление собакой при отвлекающих раздражителям. Дрессировщику необходимо учитывать свойство доминанты при подготовке собак.
Конвергенция (сближение). Схождение поступающих по чувствительным путям импульсов возбуждения в одном промежуточном или двигательном центре. В центральной нервной системе в 4–5 раз больше чувствительных путей, чем двигательных. Поэтому к одному и тому же двигательному центру могут подходить импульсы возбуждения по многим путям. Эта особенность прохождения возбуждения по нервным центрам противоположна иррадиации и является основой для концентрации возбуждения в отдельных пунктах коры головного мозга. Конвергенция обеспечивает специализацию условного рефлекса и формирование навыка на сложные и комплексные раздражители.
Окклюзия (закупорка). Проявляется при сочетании особенно сильных раздражителей, дающих эффект меньше суммы величин этих реакций на каждый раздражитель в отдельности. Это свойство противоположно суммации. Окклюзия и пространственная суммация постоянно взаимодействуют между собой. При слабом возбуждении проявляется суммация, при сильных раздражениях - окклюзия. В дрессировке собак ошибочно применение сильных раздражителей для ускорения первоначального условного рефлекса. На громкие команды и сильные подкрепления вырабатываются, как правило, слабые условные рефлексы.
Пластичность (податливость). Способность перестройки функций нервных центров. Сформировавшиеся в процессе эволюции рефлекторные акты, реакции поведения и инстинкты могут перестраиваться, а нервные центры изменять свои функции. Опытами установлено, что перестройка функций нервных центров у животных происходит под регулирующим влиянием коры полушарий головного мозга. Благодаря этому свойству при изменении условий жизни меняется поведение животных, их привычки и навыки: собака и кошка могут мирно уживаться, инстинкт преследования собакой диких животных по следам заменяется реакцией поиска человека по его запаховому следу, вредные привычки, нежелательные связи у собаки могут быть исправлены систематической дрессировкой. Пластичность нервных центров позволяет при дрессировке вырабатывать сложные навыки в виде динамических стереотипов.
Инертность. Нервные центры обладают свойством переходить в состояние возбуждения только при относительно длительном раздражении. Возбудившись, они сохраняют это состояние возбуждения в течение определенного времени. Такое явление И. П. Павлов назвал инертностью. Способность нервных центров длительно сохранять в себе следы возбуждения и торможения, сильно выражена в нервных клетках коры полушарий головного мозга. И. П. Павлов говорил, что если бы у нервных клеток не было инертности, у нас не было бы никакой памяти, никакой выучки, не существовало бы никаких привычек. У животных существует два вида памяти: кратковременная и долговременная. Оба вида памяти обеспечивают возможность выработки у животных условных рефлексов и формирования стойких навыков. Кратковременная память у собаки проявляется в течение нескольких минут, долговременная, или долгосрочная, память - через много дней, месяцев и даже лет. Оба вида памяти у животных выражаются в репродукции образа воспринимаемых отдельных раздражителей или целостного объекта.
Тонус. Нервные центры обладают свойством постоянно находиться в состоянии незначительного возбуждения при относительном рефлекторном покое. Они постоянно посылают импульсы, обеспечивающие тоническое сокращение скелетной мускулатуры. Тонус нервных центров поддерживается действием гуморальных веществ и непрерывным потоком импульсов, поступающих от рецепторов. Огромное значение в поддержании мышечного тонуса имеют нервные центры продолговатого, среднего и промежуточного мозга. Тоническое состояние нервных центров и мышечной системы обеспечивает устойчивую выработку условных рефлексов и хорошую работоспособность собаки. Состояние рабочего тонуса поддерживается правильно организованной дрессировкой, систематической тренировкой и регулярным использованием собаки на службе.
Перечисленные свойства нервных центров обеспечивают их функциональное назначение в нервной системе и организме.

Из книги Арасланов Филимон, Алексеев Алексей, Шигорин Валерий "Дрессировка собак"