Закон сохранения массы веществ химия. Закон сохранения массы веществ

ХИМИЯ

Методические указания к практическим занятиям

и для самостоятельной подготовки студентов всех

специальностей дневной и заочной форм обучения

Строение атома и химическая связь

учебно-методическим управлением

ГУ ВПО «Белорусско-Российский университет»

Одобрено кафедрой «Технологии металлов» « » мая 2011 г., протокол №

Составители: канд. хим. наук, доцент И. М. Лужанская

канд. биол. наук, ст. преподаватель И. А. Лисовая

Рецензент ст. преподаватель В.Ф. Пацей

В методических указаниях рассмотрены современные представления о строении атома, структура периодической системы элементов, дается объяснение свойств химических элементов в зависимости от их положения в периодической системе. Представлены основные виды химической связи и механизмы их образования. Даны примеры составления электронных конфигураций атомов и схемы образования химических соединенийэ.

Ответственный за выпуск Д. И. Якубович

Технический редактор А. Т. Червинская

Компьютерная верстка Н. П. Полевничая

Подписано в печать. Формат 60x84/16. Бумага офсетная. Гарнитура Таймс.

Печать трафаретная. Усл.- печ. л. . Уч.-изд. л. . Тираж 180 экз. Заказ №

Издатель и полиграфическое исполнение

Государственное учреждение высшего профессионального образования

«Белорусско-Российский университет»

ЛИ № 02330/375 от 29.06.2004 г.

212000, г. Могилев, пр. Мира, 43

© ГУ ВПО «Белорусско-Российский

университет», 2011


1 Основные понятия химии

Химия - одна из важнейших и обширных областей естествознания, наука о веществах, их свойствах, строении и превращениях, происходящих в результате химических реакций, а также фундаментальных законах, которым эти превращения подчиняются.

Вещество - вид материи, которая обладает массой покоя. Состоит из элементарных частиц: электронов, протонов, нейтронов, мезонов и др. Химия изучает главным образом вещество, организованное в атомы, молекулы, ионы и радикалы. Такие вещества принято подразделять на простые и сложные (химические соединения).

1.1 Простые и сложные вещества. Аллотропия

Простые вещества образованы атомами одного химического элемента и поэтому являются формой его существования в свободном состоянии, например, сера, железо, озон, алмаз, азот.

Сложные вещества образованы разными элементами и могут иметь состав постоянный (стехиометрические соединения или дальтониды) или меняющийся в некоторых пределах (нестехиометрические соединения или бертоллиды).

Химический элемент - множество атомов с одинаковым зарядом ядра, числом протонов, совпадающим с порядковым номером в Периодической системе элементов Менделеева. Каждый химический элемент имеет свое название и символ.

Атом - наименьшая химически неделимая часть химического элемента, являющаяся носителем его свойств.

Понятие простое вещество нельзя отождествлять с понятием химический элемент . Свойства химического элемента относятся к его отдельным атомам. Свойства простого вещества: плотность, растворимость, температуры плавления и кипения относятся к совокупности атомов. Один и тот же химический элемент может существовать в виде двух и более простых веществ, различных по строению и свойствам. Это явление называется аллотропией , а образующие вещества - аллотропными модификациями или аллотропными формами.

Химический элемент кислород образует две аллотропные модификации: кислород и озон, элемент углерод образует четыре аллотропные модификации: алмаз, графит, карбин, фуллерен.

Явление аллотропии вызывается двумя причинами: различным числом атомов в молекуле (например, кислород О 2 и озон О 3 ) либо образованием различных кристаллических форм (например, углерод образует аллотропные модификации, такие как алмаз, графит, карбин, фуллерен).

В структуре алмаза каждый атом углерода расположен в центре тетраэдра, вершинами которого служат четыре ближайших атома.

В кристаллической структуре графита атомы углерода формируют шестиугольные кольца, образующие, в свою очередь, прочную и стабильную сетку, похожую на пчелиные соты. Сетки располагаются друг над другом слоями, которые слабо связаны между собой.

В молекуле карбина атомы углерода соединены в цепочки либо тройными и одинарными связями, либо двойными связями.

В фуллерене плоская сетка шестиугольников свернута и сшита в замкнутую сферу. Атомы углерода, образующие сферу, связаны между собой сильной связью.

Сложные вещества состоят не из простых веществ, а из химических элементов. Так, водород и кислород, входящие в состав воды, содержатся в воде не в виде газообразных водорода и кислорода с их характерными свойствами, а в виде элементов водорода и кислорода.

Вещества подразделяются на вещества молекулярного и немолекулярного строения.

Вещества молекулярного строения – это вещества, основной структурной единицей которых является молекула.

Вещества немолекулярного строения – это вещества, основными структурными единицами которых являются атомы или ионы.

Для отображения качественного и количественного состава вещества используется формульная единица.

Формульная единица (ФЕ ) – реальная или условная частица, обозначаемая химической формулой.

Химическая формула – условная запись состава вещества при помощи химических символов и индексов.

Формульной единицей вещества молекулярного строения является молекула.

Молекула – электронейтральная частица вещества, представляющая собой замкнутую совокупность конечного числа атомов, связанных между собой силами ковалентной связи и образующих определенную структуру.

Формульной единицей простого вещества немолекулярного строения является атом. Например, формульная единица кремния атом Si.

Формульной единицей сложного вещества немолекулярного строения является «условная молекула». Например, формульной единицей оксида кремния является условная частица, состоящая из одного атома кремния (Si) и двух атомов кислорода (О). Она является условной потому, что в кристалле оксида кремния(IV) нет отдельных молекул SiO 2 , он состоит из множества атомов кремния и кислорода. Но весь кристалл можно условно разделить на группы, в каждой из которых будет один атом Si и два атома О. Таким образом, формульная единица оксида кремния (IV) –условная, реально не существующая частица – SiO 2 .

Если вещество немолекулярного строения образует ионную кристаллическую решетку, например хлорид натрия. Его формульной единицей будет условная частица, состоящая из одного иона Na + и одного иона Cl - . Она является условной потому, что в кристалле хлорида натрия нет молекул NaCl, так как он состоит из ионов. Но весь этот кристалл можно разделить на группы ионов, в каждой из которых будет один ион Na + и один ион Cl - . Следовательно, формульной единицей хлорида натрия является условная частица, состоящая из двух ионов – NaCl.

1.2 Относительная атомная масса

Современные методы исследования позволяют определить чрезвычайно малые массы атомов с большой точностью. Так, например, масса атома водорода составляет 1,674 × 10 -27 кг, углерода – 1,993 × 10 -26 кг.

В химии традиционно используются не абсолютные значения атомных масс, а относительные. Относительными они называются потому, что вычисляются по отношению к массе эталона. В настоящее время в качестве эталона выбрана 1/12 часть абсолютной массы атома изотопа углерода 12 С - атомная единица массы (сокращенно а.е.м.).

а.е.м. = m a (12 C)/12 = 19.9272 · 10 -27 кг/12 = 1,66· 10 -27 кг = 1,66 ·10 -24 г

Относительная атомная масса – безразмерная величина, равная отношению абсолютной массы данного атома к 1/12 части массы изотопа углерода 12 С.

Химические элементы в природе представляют собой смесь изотопов с различной массовой долей. Исходя из этого, под абсолютной массой атома химического элемента подразумевается средняя величина.

Средняя абсолютная масса атома элемента – масса атома элемента, выраженная в кг, вычисленная с учетом его изотопного состава.

Относительная атомная масса элемента (или просто атомная масса) – безразмерная величина, равная отношению средней абсолютной массы атома элемента к 1/12 части массы изотопа 12 С.

Атомные массы элементов обозначают А r , где индекс r – начальная буква английского слова relative – относительный. Записи A r (H), A r (O), A r (C) – это относительная атомная масса водорода, относительная атомная масса кислорода, относительная атомная масса углерода соответственно.

1.3 Относительная молекулярная масса

Относительной молекулярной массой вещества (Мr) называется величина, равная отношению массы молекулы вещества к 1/12 массы атома углерода 12 С .

Молекулярная масса численно равна сумме относительных атомных масс всех атомов, входящих в состав молекулы вещества.

Относительная молекулярная масса показывает, во сколько раз масса молекулы данного вещества больше 1/12 массы атома 12 С . Так, молекулярная масса кислорода M r (O 2 ) равна 32. Это означает, что масса молекулы кислорода в 32раза больше, чем 1/12 массы атома 12 C.

К сложным веществам немолекулярного строения нельзя применить понятие «относительная молекулярная масса». Поскольку структурными единицами таких веществ являются не молекулы, а условные формульные единицы, к ним применим термин «относительная формульная масса»(Мfr).

Относительная формульная масса – величина, равная отношению массы одной формульной единицы вещества к 1/12 части массы изотопа 12 С.

1.4 Моль. Молярная масса

В химических процессах участвуют мельчайшие частицы – молекулы, атомы, ионы, электроны. Число таких частиц даже в малой порции вещества очень велико. Поэтому, чтобы избежать математических операций с большими числами, для характеристики количества вещества, участвующего в химической реакции, используется специальная единица – моль.

Моль – количество вещества, содержащее в своем составе столько атомов, молекул, ионов, электронов или других структурных единиц, сколько атомов содержится в 0,012 кг углерода 12 С .

Число атомов в 0,012 кг углерода, или в 1 моль называется числом Авогадро (N A) и составляет 6,02 · 10 23 .

Исходя из этого, можно сказать, что моль – это количество вещества, которое содержит 6,02 × 10 23 структурных единиц (молекул, атомов, ионов, электронов и др.)

Применяя понятие моль, необходимо в каждом конкретном случае точно указать, какие именно структурные единицы имеются в виду. Например, моль атомов Н, моль молекулы H 2 , моль ионов H + .

Масса одного моля вещества называется молярной массой вещества (M) .

Масса вещества (m) численно равна произведению его количества (n) на молярную массу:

Поскольку в одном моле любого вещества содержится одинаковое количество структурных единиц, то молярная масса вещества пропорциональна массе соответствующей структурной единицы, т. е. относительной молекулярной массе (М r):

К = 1, т. к. для углерода М r = 12 а.е.м., а молярная масса равна 12 (по определению понятия моля), следовательно, численные значения

М (г/моль) = М r .

Отсюда следует, что молярная масса вещества, выраженная в граммах, имеет то же численное значение, что и его относительная молекулярная масса.

1.5 Эквивалент. Фактор эквивалентности. Молярная масса эквивалента

Эквивалент(Э) – реальная или условная частица вещества, которая может замещать, присоединять или быть каким-либо другим способом эквивалентна (то есть равноценна) одному атому или иону водорода в обменных реакциях или одному электрону в окислительно-восстановительных реакциях.

Частица вещества, называемая эквивалентом, может быть равна или в целое число раз меньше формульной единицы, соответствующей данному веществу.

И так же, как состав молекул, атомов или ионов, состав эквивалента выражается с помощью химических знаков и формул.

Для того чтобы определить состав эквивалента вещества и правильно записать его химическую формулу, надо исходить из конкретной реакции, в которой участвует данное вещество.

Приведены несколько примеров определения формулы эквивалента.

В обменной реакции

KOH + HCl = KCl + H 2 O; (1)

K + + OH – + H + + Cl – = K + + Cl – + H 2 O;

H + + OH – = H 2 O

с одним ионом водорода реагирует один ион гидроксила.

Согласно определению эквивалента, Э(ОН –) = ОН – , а эквивалент гидроксида калия будет соответственно равен формульной единице КОН :

Э(КОН) = КОН.

В обменной реакции

Ca(OH) 2 + 2HCl = CaCl 2 + 2H 2 O (2)

Ca 2+ + 2OH – + 2H + + 2Cl – = Ca 2+ + 2Cl – = 2H 2 O

один ион водорода эквивалентен 1/2 иона , одному иону OH – и одному иону Cl – .

Следовательно, Э(Cl –) = Cl – ; Э(Са 2+) = 1/2Са 2+ ; Э(ОН –) = ОН – .

Вместе с тем, согласно молекулярному уравнению, с одной молекулой гидроксида кальция взаимодействует две молекулы соляной кислоты, то есть два иона водорода. Следовательно, один ион водорода потребуется на взаимодействие с 1/2 Са(ОН) 2 . Тогда по определению эквивалентом гидроксида кальция является частица, равная формульной единицы, то есть ½ Са(ОН) 2 . .

В реакции восстановления катиона цинка

Zn 2+ + 2e = Zn 0 (3)

с одним ионом цинка взаимодействуют два электрона, следовательно, одному электрону эквивалентна 1/2 иона Zn 2+ и Э(Zn 2+) = 1/2Zn 2+ .

В реакции

Fe 3+ + e = Fe 2+ (4)

ион Fe 3+ реагирует с одним электроном, и, соответственно,

В реакции

Fe 3+ + 3e = Fe 0 (5)

ион Fe присоединяет три электрона, следовательно, Э(Fe 3+) = 1/3Fe 3+ .

Число, показывающее, какая часть формульной единицы вещества соответствует эквиваленту, называется фактором эквивалентности (f э).

По реакции (1): f э (OH ) = 1; f э (КOH) = 1.

По реакции (2) : f э (OH ) = 1; f э((Cа 2+) = 1/2; f э (Cа(ОН) 2) = 1/2.

По реакции (3) f э (Zn 2+) = 1/2.

По реакции (4) f э (Fe ) = 1.

По реакции (5) f э (Fe ) = 1/3.

Таким образом, сочетая фактор эквивалентности и формульную единицу вещества, можно составить формулу эквивалента какой-либо частицы, где фактор эквивалентности записывается как коэффициент перед формулой частицы:

f э (формульная единица вещества) = эквивалент.

Следует учитывать,что эквивалент одного и того же вещества меняется в зависимости от того, в какую реакцию он вступает. Эквивалент элемента также может быть различным в зависимости от вида соединения, в состав которого он входит.

Фактор эквивалентности химического элемента .

где B – валентность элемента в данном соединении.

Например, в H 2 S – f э (S) = 1/2, Э(S) = 1/2; в NH - f э (N) = 1/3,

Э(N) = 1/3N; в AlCl - f э (Al) = 1/3, Э(Al) = 1/3Al, f э (Cl) = 1, Э(Cl) = Cl.

Фактор эквивалентности кислоты зависит от ее основности, которая определяется числом ионов водорода, замещающихся в реакции на атомы металла (n(H +)):

Если кислота многоосновная, то f э может принимать различные значения. Например, в реакции

H 2 SO 4 + KOH = KHSO 4 + H 2 O (6)

Серная кислота обменивает на металл один атом водорода, f э (Н 2 SO 4) = 1, Э(H 2 SO 4) = H 2 SO 4 .

В реакции

H 2 SO 4 + 2KOH = K 2 SO 4 +2H 2 O (7)

серная кислота обменивает на металл два атома водорода, т. е. ведет себя как двухосновная кислота, поэтому f э (H 2 SO 4) = 1/2, Э(H 2 SO 4) = 1/2 H 2 SO 4 .

Фактор эквивалентности основания зависит от кислотности основания, которая определяется числом гидроксильных групп, обменивающихся в реакции на кислотный остаток (n(OH -):

Для многокислотных оснований f э – величина переменная и зависит от условий проведения реакции. Например, в реакции

Al(OH) 3 + 2HCl = Al(OH) 2 Cl + 2H 2 O (8)

гидроксид алюминия обменивает одну гидроксильную группу на кислотный остаток, поэтому f э (Al(OH) 3) = 1, Э(Al(OH) 3) = Al(OH) 3 .

В реакции

Al(OH) 3 + 2HCl = Al(OH)Cl 2 + 2H 2 O (9)

гидроксид алюминия обменивает две гидроксильные группы на кислотный остаток, поэтому fэ(Al(OH) 3) = 1/2, Э(Al(OH) 3) = 1/2Al(OH) 3.

В реакции

Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O (10)

гидроксид алюминия обменивает три гидроксильные группы на кислотный остаток, поэтому f э (Al(OH) 3) = 1/3, Э(Al(OH) 3) = 1/3Al(OH) 3 .

Фактор эквивалентности средней соли определяется формулой

где В – валентность метала,

n – число атомов металла.

Например, f э (Na 2 SO 4) = 1/(1·2) = 1/2; f э (Fe 2 SO 4) 3) = 1/(2·3) =1/6.

Фактор эквивалентности кислых и основных солей определяется исходя из уравнения реакции с учетом того, что вещества взаимодействуют друг с другом в эквивалентных количествах.

B реакции

NaHSO 4 +NaOH = Na 2 SO 4 + H 2 O (11)

одна молекула гидросульфата натрия взаимодействует с одним эквивалентом NaOH, следовательно, f э (NaHSO 4) = 1, Э(NaHSO 4) = NaHSO 4 .

В реакции

NaHSO 4 + BaCl 2 = BaSO 4 + NaCl + HCl(12)

одна молекула гидросульфата натрия взаимодействует с двумя эквивалентами хлорида бария, т.к. f э (ВаCl 2) = 1/2 и Э(BaCl 2) = 1/2BaCl 2 , следовательно, fэ(NaHSO 4 ) также равен 1/2 и Э(NaHSO 4) = 1/2NaHSO 4.

В реакции

Al(OH)Cl 2 + HCl = AlCl 3 + H 2 O (13)

одна молекула дихлорида гидроксоалюминия взаимодействует с одним эквивалентом HCl, поэтому fэ(Al(OH)Cl 2) = 1, Э(Al(OH)Cl 2) = Al(OH)Cl 2 .

В реакции

Al(OH)Cl 2 + 2NaOH= Al(OH) 3 + 2NaCl (14)

одна молекула дихлорида гидроксоалюминия взаимодействует с двумя эквивалентами NaОН (f э (NaOH) = 1), следовательно, f э (AlOHCl 2) = 1/2, Э(AlOHCl 2) = 1/2 AlOHCl 2 .

В реакции

Al(OH)Cl 2 + Na 3 PO 4 = AlPO 4 + 2NaCl= Na(OH) (15)

одна молекула дихлорида гидроксоалюминия взаимодействует с тремя эквивалентами Na 3 PO 4 (fэ(Na 3 PO 4) = 1/3), поэтому fэ(AlOHCl 2) = 1/3, Э(AlOHCl 2) = 1/3AlOHCl 2 .

Фактор эквивалентности оксидов, проявляющих основные свойства , определяется по формуле

где В – валентность металла,

n – число атомов металла в оксиде.

Например: CaO f э (СaO) = 1/2, Э(CaO) = 1/2 CaO;

Na 2 O f э (Na 2 O) = 1/2, Э(Na 2 O) = 1/2Na 2 O;

Al 2 O 3 f э (Al 2 O 3) = 1/6, Э(Al 2 O 3) = 1/6 Al 2 O 3.

Фактор эквивалентности оксидов , проявляющих кислотные свойства , определяется исходя из уравнения реакции.

В реакции

SO 3 + 2NaOH= Na 2 SO 4 + H 2 O(16) одна молекула оксида серы (VI) взаимодействует с двумя эквивалентами гидроксида натрия (f э (NaOH) = 1) , cледовательно, f э (SO 3) = 1/2, Э(SO 3) = 1/2SO 3 .

В реакции

Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O (17)

одна молекула оксида алюминия взаимодействует с двумя эквивалентами гидроксида натрия, поэтому f э (Al 2 O 3) равен 1/2, Э(Al 2 O 3) = 1/2 Al 2 O 3 .

Таким образом, на основании всех вышеприведенных примеров можно сделать вывод, что фактор эквивалентности любого вещества равен единице, деленной на число образующихся либо перестраивающихся связей.

Для эквивалента справедливы все понятия, характеризующие структурные единицы вещества, в том числе количество вещества и молярная масса вещества.

Количество вещества эквивалентов измеряется в молях.

Моль эквивалентов – это количество вещества, которое соединяется с 1 молем атомов водорода или 1/2 моля атомов кислорода или замещает те же количества водорода в их соединениях. Например, в соединениях HCl,H 2 S, NH 3 , CH 4 моль эквивалентов хлора, серы, азота, углерода равен соответственно 1 моль Cl, 1/2 моля S, 1/3 моля N, 1/4 моля углерода.

Молярная масса эквивалента (М э) – это масса одного моля эквивалентов.

Для нахождения молярной массы эквивалентов химического элемента нужно молярную массу данного элемента умножить на фактор эквивалентности:

Например, в соединениях:

HCl M э (Cl) = f э (Cl) · M(Cl) = 1· 35.5 г/моль;

NH 3 M э (N) = f э (N) · M(N) = 1/3· 14 = 4.67 г/моль;

H 2 S М э (S) = f э S) · Ms = 1/2 · 32 = 16 г/моль;

CH 4 М э (C) = fэ · Mc = 1/4 · 12 = 3 г/моль.

Для кислот, оснований, средних солей и оксидов, проявляющих основные свойства, молярная масса эквивалентов может быть рассчитана как сумма молярных масс эквивалентов, составляющих данное соединение ионов или элементов, если речь идет об оксидах.

Например, в реакции (6) Мэ(H 2 SO 4) равна:

М э (Н +) + М э (HSO 4 –) = f э (H +)· M(H +) + f э (HSO 4 –) · M(HSO 4 –) = 98 г/моль.

В реакции (7) Мэ(H 2 SO 4) равна:

М э (Н +) + М э (SO 4 2–) = f э (H +) · M(H +) + f э (SO 4 2–) · M(SO 4 2–) = 49 г/моль

В реакции (8) М э (Al(OH) 3 ) равна:

М э (Al(OH) 2 +) + M э (OH –) = f э (Al(OH) 2 +) · M(Al(OH) 2 +) + f э (OH –) · M э (OH –) = 78 г/моль

В реакции (9) М э (Al(OH) 3) равна:

М э (AlOH 2+) + M э (OH –) = f э (Al(OH) 2+) · M(AlOH 2+) + f э (OH –) · M э (OH –) = 39г/моль

В реакции (10) М э (Al(OH) 3)равна:

М э (Al 3+) + M э (OH –) = f э (Al 3+) · M(Al) + f э (OH –) · M(OH –) = 26 г/моль

М э (Al 2 (SO 4) 3) = f э (Al 3+) · M(Al) +f э (SO 4 2-) · M(SO 4 2-) = 57 г/моль

Основные законы химии

Раздел химии, рассматривающий массовые и объемные отношения между реагирующими веществами, называется стехиометрией. Основу стехиометрии составляют стехиометрические законы: сохранения массы веществ, постоянства состава, эквивалентов, кратных отношений, объемных отношений, Авогадро. К рассмотрению предложены некоторые из них.

Закон сохранения массы вещества

Закон сохранения массы вещества был сформулирован великим русским ученым Михаилом Васильевичем Ломоносовым в 1748 г. и подтвержден экспериментально им самим в 1756 г. и независимо от него французским химиком А. Л. Лавуазье в 1789 г.

В настоящее время он формулируется так: масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции.

С точки зрения атомно-молекулярного учения суть закона сохранения массы веществ заключается в том, что в химических реакциях атомы не исчезают и не возникают из ничего, их число остается неизменным до и после реакции. Поэтому атомы имеют постоянную массу и их число в результате реакции не изменяется, а происходит только перегруппировка атомов, то масса веществ до и после реакции остается постоянной.

Закон сохранения массы является частным случаем общего закона природы закона сохранения энергии, который утверждает, что энергия изолированной системы постоянна. Энергия - это мера движения и взаимодействия различных видов материи. При любых процессах в изолированной системе энергия не производится и не уничтожается, она может только переходить из одной формы в другую.

Одной из форм энергии является так называемая энергия покоя, которая связана с массой уравнением Эйнштейна:

Е = m · C 2

где E - энергия тела,

m -масса тела,

c - скорость света в вакууме, равная 299 792 458 м/с.

Это соотношение выражает эквивалентность массы и энергии. Эквивалентность массы и энергии - физическая концепция, согласно которой масса тела является мерой энергии, заключённой в нём. Самое важное состоит в том, что формула Эйнштейна раскрывает возможность взаимных превращений энергии и массы или, иначе говоря, возможность превращений энергии покоя в другие виды энергии. Следовательно, масса и энергия сохраняются не по отдельности, а вместе, что дает основание говорить об объединенном законе сохранения массы и энергии.

В химических реакциях изменением массы, вызванным выделением или поглощением энергии, можно пренебречь. Типичный тепловой эффект химической реакции по порядку величины равен 100 кДж/моль. При этом изменение массы

Таким образом, совершенно правомерно использование закона сохранения массы вещества при составлении химических уравнений и при проведении стехиометрических расчетов.

Закон постоянства состава

Согласно закону постоянства состава каждое химически чистое соединение всегда имеет один и тот же количественный состав независимо от способа его получения. Этот закон появился в результате длительного (1801 1808) спора французских химиков Ж.Пруста, считавшего, что отношения между элементами, образующими соединения, должны быть постоянными, и К.Бертолле, который считал, что состав химических соединений является переменным. В результате тщательной экспериментальной проверки восторжествовала точка зрения Пруста, считавшего состав соединений постоянным. Закон постоянства состава сыграл важную роль в развитии химии и до сих пор сохранил свое значение, однако выяснилось, что не все соединения имеют постоянный состав. В 1912–1913 гг Н. С. Курнаков установил, что существуют соединения переменного состава, которые он предложил назвать бертоллидами.

Согласно современным представлениям, постоянство состава свойственно лишь соединениям с молекулярной структурой.

Таким образом, постоянный и неизменный химический состав наблюдается только для молекул (например, NH 3 , H 2 O, SO 2 и т. п.), а также кристаллов с молекулярной структурой, составляющих от 3 до 5 % от общего числа неорганических твердых тел. Хорошо известными примерами являются твердый йод, кислород, азот, диоксид углерода, благородные газы в твердом состоянии.

В настоящее время установлено, что к соединениям переменного состава относятся не только металлические соединения (металлиды), но и многочисленные оксиды, сульфиды, селениды, теллуриды, нитриды, фосфиды, карбиды, силициды.

Природа отклонений от стехиометрии в соединениях переменного состава состоит в том, что при любых температурах, отличных от абсолютного нуля, в реальном кристалле существуют дефекты структуры. При повышении температуры концентрация этих дефектов возрастает, что приводит к увеличению энтропии (неупорядоченности) системы. Абсолютно упорядоченной структурой обладает так называемый идеальный кристалл, в котором каждый атом занимает предназначенный ему узел в подрешетке. При этом все узлы заняты, а междоузлия вакантны. Такая идеализированная структура обладает полным порядком (энтропия равна нулю) и может быть реализована только при температуре абсолютного нуля. При повышении температуры нарушения идеальной структуры возможны за счет возникновения незанятых узлов в кристаллической решетке, появления атомов в междоузлиях или существования в узлах решетки чужеродных атомов. Возникновение таких дефектов в реальных кристаллах приводит к нестехиометрии. Хорошо изученным соединением переменного состава является сульфид железа FeS. Для природных кристаллов сульфида железа наблюдается недостаток от 10 до 20 % атомов железа против формульного состава.Для оксида титана (II) нарушение стехиометрического состава наблюдается относительно обоих сортов атомов. В TiO в зависимости от условий получения (температура, давление кислорода) атомная доля кислорода может меняться от 0,58 до 1,33. Это значит, что все составы оксида титана (II) от 0,58 до 1,00 будут характеризоваться недостатком атомов кислорода (соответственно избытком атомов титана) против стехиометрии. А составы от 1,00 до 1,33 будут иметь избыток атомов кислорода (или недостаток атомов титана) по сравнению со стехиометрическим составом.

Закон постоянства состава был в свое время сформулирован применительно к молекулам, а потому справедлив для молекулярной формы существования вещества. В настоящее время этот закон формулируется с учетом существования молекулярной и немолекулярной структуры вещества.

Состав молекулярного соединения остается постоянным независимо от способа его получения. В отсутствие молекулярной структуры в данном агрегатном состоянии состав вещества зависит от условий его получения и предыдущей обработки.

Например, аммиак независимо от способов получения (прямой синтез из элементов, разложение аммонийных солей, действие кислот на нитриды активных металлов и т. п.) имеет постоянный состав молекулы: на один атом азота приходится три атома водорода. А для оксида титана (II) состав соединения зависит от условий получения температуры и давления пара кислорода.

2.3 Закон Авогадро

Изучение свойств газов позволило итальянскому физику А. Авогадро в 1811г. высказать гипотезу, которая впоследствии была подтверждена опытными данными, и стала называться законом Авогадро: в равных объемах различных газов при одинаковых условиях (температуре и давлении) содержится одинаковое число молекул.

Из закона Авогадро вытекает важное следствие: моль любого газа при нормальных условиях (0 С (273 К) и давлении 101,3 кПа) занимает объем, равный 22,4 л. В этом объеме содержится 6,02× 10 23 молекул газа (число Авогадро).

Из закона Авогадро также следует, что массы равных объемов различных газов при одинаковых температуре и давлении относятся друг к другу как молярные массы этих газов:

где m 1 и m 2 – массы,

М 1 и М 2 – молекулярные массы первого и второго газов.

Поскольку масса вещества определяется по формуле

где ρ– плотность г аза,

V – объем газа,

то плотности различных газов при одинаковых условиях пропорциональны их молярным массам. На этом следствии из закона Авогадро основан простейший метод определения молярной массы веществ, находящихся в газообразном состоянии.

.

Из этого уравнения можно определить молярную массу газа:

.

Закон объемных отношений

Первые количественные исследования реакций между газами принадлежат французскому ученому Гей-Люссаку, автору известного закона о тепловом расширении газов. Измеряя объемы газов, вступивших в реакцию и образующихся в результате реакций, Гей-Люссак пришел к обобщению, известному под названием закона простых объемных отношений: объемы вступающих в реакцию газов относятся друг к другу и объемам образующихся газообразных продуктов реакции как небольшие целые числа, равные их стехиометрическим коэффициентам .

Например, 2H 2 + O 2 = 2H 2 O при взаимодействии двух объемов водорода и одного объема кислорода образуются два объема водяного пара. Закон справедлив в том случае, когда измерения объемов проведены при одном и том же давлении и одной и той же температуре.

Закон эквивалентов

Введение в химию понятий «эквивалент» и «молярная масса эквивалентов» позволило сформулировать закон, называемый законом эквивалентов: массы (объемы) реагирующих друг с другом веществ пропорциональны молярным массам (объемам) их эквивалентов .

Следует остановиться на понятии объема моля эквивалентов газа. Как следует из закона Авогадро, моль любого газа при нормальных условиях занимает объем, равный 22,4 л. Соответственно, для вычисления объема моля эквивалентов газа необходимо знать число моль эквивалентов в одном моле. Так как один моль водорода содержит 2 моля эквивалентов водорода, то 1 моль эквивалентов водорода занимает при нормальных условиях объем:

Решение типовых задач


Похожая информация.


Из данного урока вы узнаете, в чем заключается сущность химической реакции с позиции атомно-молекулярной теории. Урок посвящен изучению одного из важнейших законов химии - закона сохранения массы веществ.

Тема: Первоначальные химические представления

Урок: Сущность химической реакции. Закон сохранения массы веществ

Вопрос о сущности химического превращения долгое время оставался загадкой для естествоиспытателей. Только с развитием атомно-молекулярной теории стало возможным предположить, как на уровне атомов и молекул происходят химические реакции.

В соответствие с атомно-молекулярной теорией, вещества состоят из молекул, а молекулы – из атомов. В ходе химической реакции атомы, входящие в состав исходных веществ, не исчезают и не появляются новые атомы.

Тогда, мы можем предположить, что в результате химической реакции продукты реакции образуются из атомов, которые ранее входили в состав исходных веществ. Вот модель химической реакции:

Рис. 1. Модель химической реакции с позиции АМТ

Проанализировав данную модель, мы можем выдвинуть гипотезу (научно обоснованное предположение):

Суммарная масса продуктов реакции должна быть равна суммарной массе исходных веществ.

Еще Леонардо да Винчи сказал: «Знания, не проверенные опытом, матерью всякой достоверности, бесплодны и полны ошибок». Значит, гипотеза никогда не станет законом, если ее не подтвердить экспериментально.

Экспериментальный метод в химии начал широко использоваться после исследований Р. Бойля в 17 в. Английский естествоиспытатель прокаливал металлы в незапаянных сосудах – ретортах и обнаружил, что после прокаливания масса металла становилась больше.

Основываясь на этих опытах, он не учитывал роль воздуха и сделал неправильный вывод, что масса веществ в ходе химических реакций изменяется.

М.В. Ломоносов, в отличие от Р. Бойля, прокаливал металлы не на открытом воздухе, а в запаянных ретортах и взвешивал их до и после прокаливания. Он доказал, что масса веществ до и после реакции остается неизменной и что при прокаливании к металлу присоединяется воздух (кислород в то время не был еще открыт). Но Ломоносов не опубликовал результаты своих исследований.

В 1774 г. опыты Р. Бойля повторил А. Лавуазье с совершенно такими же результатами, как и Ломоносов. Но он сделал новое, очень важное, наблюдение, а именно, что только часть воздуха запаянной реторты соединилась с металлом и что увеличение веса металла, перешедшего в окалину, равно уменьшению веса воздуха в реторте. Вместе с тем часть металла осталась в свободном виде.

Таким образом, независимо друг от друга, М.В. Ломоносов и А. Лавуазье подтвердили справедливость предположения о сохранении массы веществ в результате химической реакции.

Это предположение стало законом лишь после десятилетнего исследования немецкого химика Г. Ландольта в начале 20 века. Сегодня закон сохранения массы веществ формулируется так:

Масса веществ, участвующих в реакции, равна массе продуктов реакции .

Подтвердить правильность закона сохранения массы веществ можно с помощью следующего опыта. В первом сосуде Ландольта подготовим растворы йодида калия и нитрата свинца. Во втором сосуде – пройдет реакция хлорида железа с роданидом калия. Плотно закрываем пробки. Уравновешиваем чашки весов. Сохранится ли равновесие после окончания реакций? В первом сосуде выпадает желтый осадок йодида свинца, во втором образуется темно-красный роданид трехвалентного железа. В сосудах Ландольта произошли химические реакции: образовались новые вещества. Но равновесие не нарушилось (Рис. 2). Масса исходных веществ всегда равна массе продуктов реакции.

Рис. 2. Эксперимент, подтверждающий правильность закона сохранения массы веществ

Приведем пример еще одного опыта, доказывающего правильность закона сохранения массы веществ в химических реакциях. Внутри колбы при закрытой пробке будет гореть свеча. Уравновесим весы. Подожжем свечу и опустим ее в колбу. Плотно закроем колбу пробкой. Горение свечи – это химический процесс. Израсходовав находящийся в колбе кислород, свеча гаснет, химическая реакция завершается. Но равновесие весов не нарушается: масса продуктов реакции остается такой же, какой была масса исходных веществ (Рис. 3).

Рис. 3. Эксперимент с горящей свечой в колбе

Открытие закона сохранения массы веществ имело огромное значение для дальнейшего развития химии. На основании закона сохранения массы веществ производят важнейшие расчеты и составляют уравнения химических реакций.

1. Сборник задач и упражнений по химии: 8-й класс: к учебнику П.А. Оржековского и др. «Химия, 8 класс» / П.А. Оржековский, Н.А. Титов, Ф.Ф. Гегеле. – М.: АСТ: Астрель, 2006.

2. Ушакова О.В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006. (с.15-16)

3. Химия: 8-й класс: учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005.(§6)

4. Химия: неорг. химия: учеб. для 8 кл. общеобр. учреждений / Г.Е. Рудзитис, ФюГю Фельдман. – М.: Просвещение, ОАО «Московские учебники», 2009.

5. Энциклопедия для детей. Том 17. Химия / Глав. ред.В.А. Володин, вед. науч. ред. И. Леенсон. – М.: Аванта+, 2003.

Дополнительные веб-ресурсы

1. Единая коллекция цифровых образовательных ресурсов ().

2. Электронная версия журнала «Химия и жизнь» ().

Домашнее задание

с. 16 №№ 3,5 из Рабочей тетради по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006.

Закон сохранения массы.

Масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции.

Закон сохранения массы является частным случаем общего закона природы – закона сохранения материи и энергии. На основании этого закона химические реакции можно отобразить с помощью химических уравнений, используя химические формулы веществ и стехиометрические коэффициенты, отражающие относительные количества (число молей) участвующих в реакции веществ.

Например, реакция горения метана записывается следующим образом:

Закон сохранения массы веществ

(М.В.Ломоносов, 1748 г.; А.Лавуазье, 1789 г.)

Масса всех веществ, вступивших в химическую реакцию, равна массе всех продуктов реакции.

Атомно-молекулярное учение этот закон объясняет следующим образом: в результате химических реакций атомы не исчезают и не возникают, а происходит их перегруппировка (т.е. химическое превращение- это процесс разрыва одних связей между атомами и образование других, в результате чего из молекул исходных веществ получаются молекулы продуктов реакции). Поскольку число атомов до и после реакции остается неизменным, то их общая масса также изменяться не должна. Под массой понимали величину, характеризующую количество материи.

В начале 20 века формулировка закона сохранения массы подверглась пересмотру в связи с появлением теории относительности (А.Эйнштейн, 1905 г.), согласно которой масса тела зависит от его скорости и, следовательно, характеризует не только количество материи, но и ее движение. Полученная телом энергия E связана с увеличением его массы mсоотношением E = m c 2 , где с - скорость света. Это соотношение не используется в химических реакциях, т.к. 1 кДж энергии соответствует изменению массы на ~10 -11 г и mпрактически не может быть измерено. В ядерных реакциях, где Е в ~10 6 раз больше, чем в химических реакциях, m следует учитывать.

Исходя из закона сохранения массы, можно составлять уравнения химических реакций и по ним производить расчеты. Он является основой количественного химического анализа.

Закон постоянства состава

Закон постоянства состава (Ж.Л. Пруст , 1801 -1808гг .) - любое определенное химически чистое соединение независимо от способа его получения состоит из одних и тех же химических элементов , причем отношения их масс постоянны, а относительные числа их атомов выражаются целыми числами. Это один из основных законов химии .

Закон постоянства состава не выполняется для бертоллидов (соединений переменного состава). Однако условно для простоты состав многих бертоллидов записывают как постоянный. Например, состав оксида железа(II) записывают в виде FeO (вместо более точной формулы Fe 1-x O).

ЗАКОН ПОСТОЯНСТВА СОСТАВА

Согласно закону постоянства состава, всякое чистое вещество имеет постоянный состав независимо от способа его получения. Так, оксид кальция можно получить следующими способами:

Независимо от того, каким способом получено вещество СаО, оно имеет постоянный состав: один атом кальция и один атом кислорода образуют молекулу оксида кальция СаО.

Определяем молярную массу СаО:

Определяем массовую долю Са по формуле:

Вывод: В химически чистом оксиде массовая доля кальция всегда составляет 71,4% и кислорода 28,6%.

Закон кратных отношений

Закон кратных отношений - один из стехиометрических законов химии : если два вещества (простых или сложных ) образуют друг с другом более одного соединения, то массы одного вещества, приходящиеся на одну и ту же массу другого вещества, относятся как целые числа , обычно небольшие.

Примеры

1) Состав оксидов азота (в процентах по массе) выражается следующими числами:

Закись азота N 2 O

Окись азота NO

Азотистый ангидрид N 2 O 3

Двуокись азота NO 2

Азотный ангидрид N 2 O 5

Частное O/N

Разделив числа нижней строки на 0,57, видим, что они относятся как 1:2:3:4:5.

2) Хлористый кальций образует с водой 4 кристаллогидрата , состав которых выражается формулами: CaCl 2 ·H 2 O, CaCl 2 ·2H 2 O, CaCl 2 ·4H 2 O, CaCl 2 ·6H 2 O, т. е. во всех этих соединениях массы воды, приходящиеся на одну молекулу CaCl 2 , относятся как 1: 2: 4: 6.

Закон объемных отношений

(Гей-Люссак, 1808 г.)

"Объемы газов, вступающих в химические реакции, и объемы газов, образующихся в результате реакции, относятся между собой как небольшие целые числа".

Следствие. Стехиометрические коэффициенты в уравнениях химических реакций для молекул газообразных веществ показывают, в каких объемных отношениях реагируют или получаются газообразные вещества.

2CO + O 2  2CO 2

При окислении двух объемов оксида углерода (II) одним объемом кислорода образуется 2 объема углекислого газа, т.е. объем исходной реакционной смеси уменьшается на 1 объем.

b) При синтезе аммиака из элементов:

n 2 + 3h 2  2nh 3

Один объем азота реагирует с тремя объемами водорода; образуется при этом 2 объема аммиака - объем исходной газообразной реакционной массы уменьшится в 2 раза.

Уравнение Клайперона-Менделеева

Если записать объединенный газовый закон для любой массы любого газа, то получается уравнение Клайперона-Менделеева:

где m - масса газа; M - молекулярная масса; p - давление; V - объем; T - абсолютная температура (°К); R - универсальная газовая постоянная (8,314 Дж/(моль К) или 0,082 л атм/(моль К)).

Для данной массы конкретного газа отношение m / M постоянно, поэтому из уравнения Клайперона-Менделеева получается объединенный газовый закон.

Какой объем займет при температуре 17°C и давлении 250 кПа оксид углерода (II) массой 84 г?

Количество моль CO равно:

 (CO) = m(CO) / M(CO) = 84 / 28 = 3 моль

Объем CO при н.у. составляет

3 22,4 л = 67,2 л

Из объединенного газового закона Бойля-Мариотта и Гей-Люссака:

(P V) / T = (P 0 V 0) / T 2

V (CO) = (P 0 T V 0) / (P T 0) = (101,3 (273 + 17) 67,2) / (250 273) = 28,93 л

Относительная плотность газов показывает, во сколько раз 1 моль одного газа тяжелее (или легче) 1 моля другого газа.

D A(B) = (B)  (A) = M (B) / M (A)

Средняя молекулярная масса смеси газов равна общей массе смеси, деленной на общее число молей:

M ср = (m 1 +.... + m n) / ( 1 +.... +  n) = (M 1 V 1 + .... M n V n) / ( 1 +.... +  n)

ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ : в изолир. системе энергия системы остается постоянной, возможны лишь переходы одного вида энергии в другой. В термодинамике сохранения энергии закону соответствует первое начало термодинамики, к-рое выражается ур-нием Q = DU + W, где Q-кол-во сообщенной системе теплоты, DU-изменение внутр. энергии системы, W - совершенная системой работа. Частный случай сохранения энергии закона-Гесса закон.

Понятие энергии подверглось пересмотру в связи с появлением теории относительности (А. Эйнштейн, 1905): полная энергия E пропорциональна массе т и связана с ней соотношением Е = тс2, где с-скорость света. Поэтому массу можно выражать в единицах энергии и сформулировать более общий закон сохранения массы и энергии: в изо-лир. системе сумма масс и энергии постоянна и возможны лишь превращения в строго эквивалентных соотношениях одних форм энергии в другие и эквивалентно связанные друг с другом изменения массы и энергии.

Закон эквивалентов

вещества взаимодействуют друг с другом в количествах, пропорциональных их эквивалентам. При решении некоторых задач удобнее пользоваться другой формулировкой этого закона: массы (объемы) реагирующих друг с другом веществ пропорциональны их эквивалентным массам (объемам).

эквивалентов: химические элементы соединяются друг с другом в строго определенных количествах, соответствующих их эквивалентам. Математическое выражение закона эквивалентов имеет следующий вид: где m1 и m2 - массы реагирующих или образующихся веществ, m экв(1) и m экв(2) - эквивалентные массы этих веществ.

Например: некоторое количество металла, эквивалентная масса которого равна 28г/моль, вытесняет из кислоты 0,7 л водорода, измеренного при нормальных условиях. Определить массу металла. Решение: зная, что эквивалентный объем водорода равен 11,2 л/моль, составляет пропорцию: 28 г металла эквивалентны 11,2 л водорода х г металла эквивалентны 0,7 л водорода. Тогда х=0,7*28/11,2= 1,75 г.

Для определения эквивалента или эквивалентной массы необязательно исходить из его соединения с водородом. Их можно определить по составу соединения данного элемента с любым другим, эквивалент которого известен.

Например: при соединении 5,6 г железа с серой образовалось 8,8 г сульфида железа. Нужно найти эквивалентную массу железа и его эквивалент, если известно, что эквивалентная масса серы равна 16 г/моль. Решение: из условия задачи следует, что в сульфиде железа на 5,6 г железа приходится 8,8-5,6=3,2 г серы. Согласно закону эквивалентов, массы взаимодействующих веществ пропорциональны их эквивалентным массам, то есть 5,6 г железа эквивалентны 3,2 г серы mэкв (Fе) эквивалентна 16 г/моль серы. Отсюда следует, что m3KB(Fe) = 5,6*16/3,2=28 г/моль. Эквивалент железа равен: 3=mэкв(Fe)/M(Fe)=28 г/моль:56 г/моль=1/2. Следовательно, эквивалент железа равен 1/2 моля, то есть в 1 моле железа содержится 2 эквивалента.

Закон Авогадро

Следствия закона

Первое следствие из закона Авогадро: один мольлюбого газа при одинаковых условиях занимает одинаковый объём .

В частности, при нормальных условиях, т. е. при 0 °C (273К) и 101,3 кПа, объём 1 моля газа, равен 22,4 л. Этот объём называют молярным объёмом газа V m . Пересчитать эту величину на другие температуру и давление можно с помощью уравнения Менделеева-Клапейрона:

.

Второе следствие из закона Авогадро: молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа по второму .

Положение это имело громадное значение для развития химии, так как оно дает возможность определять частичный вес тел, способных переходить в газообразное или парообразное состояние. Если через m мы обозначим частичный вес тела, и через d - удельный вес его в парообразном состоянии, то отношение m / d должно быть постоянным для всех тел. Опыт показал, что для всех изученных тел, переходящих в пар без разложения, эта постоянная равна 28,9, если при определении частичного веса исходить из удельного веса воздуха, принимаемого за единицу, но эта постоянная будет равняться 2, если принять за единицуудельный весводорода. Обозначив эту постоянную, или, что то же, общий всем парам и газам частичный объём черезС , мы из формулы имеем с другой стороны m = dC . Так как удельный вес параопределяется легко, то, подставляя значениеd в формулу, выводится и неизвестный частичный вес данного тела.

Термохимия

Тепловой эффект химической реакции

Материал из Википедии - свободной энциклопедии

Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции - отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:

Реакция должна протекать либо при постоянном объёме Q v (изохорный процесс), либо при постоянном давлении Q p (изобарный процесс ).

В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

Если реакцию проводят при стандартных условиях при Т = 298,15 К = 25 ˚С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ΔH r O . В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.

Стандартная энтальпия образования (стандартная теплота образования)

Под стандартной теплотой образования понимают тепловой эффект реакции образования одного моля вещества из простых веществ, его составляющих, находящихся в устойчивыхстандартных состояниях .

Например, стандартная энтальпия образования 1 моль метана из углерода и водорода равна тепловому эффекту реакции:

С(тв) + 2H 2 (г) = CH 4 (г) + 76 кДж/моль.

Стандартная энтальпия образования обозначается ΔH f O . Здесь индекс f означает formation (образование), а перечеркнутый кружок, напоминающий диск Плимсоля - то, что величина относится к стандартному состоянию вещества. В литературе часто встречается другое обозначение стандартной энтальпии - ΔH 298,15 0 , где 0 указывает на равенство давления одной атмосфере (или, несколько более точно, на стандартные условия ), а 298,15 - температура. Иногда индекс 0 используют для величин, относящихся к чистому веществу , оговаривая, что обозначать им стандартные термодинамические величины можно только тогда, когда в качестве стандартного состояния выбрано именно чистое вещество . Стандартным также может быть принято, например, состояние вещества в предельно разбавленном растворе. «Диск Плимсоля» в таком случае означает собственно стандартное состояние вещества, независимо от его выбора.

Энтальпия образования простых веществ принимается равной нулю, причем нулевое значение энтальпии образования относится к агрегатному состоянию, устойчивому при T = 298 K. Например, для йода в кристаллическом состоянии ΔH I2(тв) 0 = 0 кДж/моль, а для жидкого йода ΔH I2(ж) 0 = 22 кДж/моль. Энтальпии образования простых веществ при стандартных условиях являются их основными энергетическими характеристиками.

Тепловой эффект любой реакции находится как разность между суммой теплот образования всех продуктов и суммой теплот образования всех реагентов в данной реакции (следствиезакона Гесса ):

ΔH реакции O = ΣΔH f O (продукты) - ΣΔH f O (реагенты)

Термохимические эффекты можно включать в химические реакции. Химические уравнения в которых указано количество выделившейся или поглощенной теплоты, называются термохимическими уравнениями. Реакции, сопровождающиеcя выделением тепла в окружающую среду имеют отрицательный тепловой эффект и называются экзотермическими . Реакции, сопровождающиеся поглощением тепла имеют положительный тепловой эффект и называются эндотермическими . Тепловой эффект обычно относится к одному молю прореагировавшего исходного вещества, стехиометрический коэффициент которого максимален.

Температурная зависимость теплового эффекта (энтальпии) реакции

Чтобы рассчитать температурную зависимость энтальпии реакции, необходимо знать мольные теплоемкости веществ, участвующих в реакции. Изменение энтальпии реакции при увеличении температуры от Т 1 до Т 2 рассчитывают по закону Кирхгофа (предполагается, что в данном интервале температур мольные теплоемкости не зависят от температуры и нет фазовых превращений ):

Если в данном интервале температур происходят фазовые превращения, то при расчёте необходимо учесть теплоты соответствующих превращений, а также изменение температурной зависимости теплоемкости веществ, претерпевших такие превращения:

где ΔC p (T 1 ,T f) - изменение теплоемкости в интервале температур от Т 1 до температуры фазового перехода; ΔC p (T f ,T 2) - изменение теплоемкости в интервале температур от температуры фазового перехода до конечной температуры, и T f - температура фазового перехода.

Стандартная энтальпия сгорания

Стандартная энтальпия сгорания - ΔH гор о, тепловой эффект реакции сгорания одного моля вещества в кислороде до образования оксидов в высшей степени окисления. Теплота сгорания негорючих веществ принимается равной нулю.

Стандартная энтальпия растворения

Стандартная энтальпия растворения - ΔH раств о, тепловой эффект процесса растворения 1 моля вещества в бесконечно большом количестве растворителя. Складывается из теплоты разрушения кристаллической решетки и теплоты гидратации (или теплоты сольватации для неводных растворов), выделяющейся в результате взаимодействия молекул растворителя с молекулами или ионами растворяемого вещества с образованием соединений переменного состава - гидратов (сольватов). Разрушение кристаллической решетки, как правило, эндотермический процесс - ΔH реш > 0, а гидратация ионов - экзотермический, ΔH гидр < 0. В зависимости от соотношения значений ΔH реш и ΔH гидр энтальпия растворения может иметь как положительное, так и отрицательное значение. Так растворение кристаллического гидроксида калия сопровождается выделением тепла:

ΔH раствKOH о = ΔH реш о + ΔH гидрК +о + ΔH гидрOH −о = −59 КДж/моль

Под энтальпией гидратации - ΔH гидр, понимается теплота, которая выделяется при переходе 1 моля ионов из вакуума в раствор.

Стандартная энтальпия нейтрализации

Стандартная энтальпия нейтрализации - ΔH нейтр о энтальпия реакции взаимодействия сильных кислот и оснований с образованием 1 моля воды при стандартных условиях:

HCl + NaOH = NaCl + H 2 O

H + + OH − = H 2 O, ΔH нейтр ° = −55,9 кДж/моль

Стандартная энтальпия нейтрализации для концентрированных растворов сильных электролитов зависит от концентрации ионов, вследствие изменения значения ΔH гидратации ° ионов при разбавлении.

Энтальпия

Энтальпия - это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту.

Энтальпия - это термодинамическое свойство вещества, которое указывает уровень энергии, сохраненной в его молекулярной структуре. Это значит, что, хотя вещество может обладать энергией на основании температуры и давления, не всю ее можно преобразовать в теплоту. Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру. Часть кинетической энергии вещества недоступна, когда его температура приближается к температуре окружающей среды. Следовательно, энтальпия - это количество энергии, которая доступна для преобразования в теплоту при определенной температуре и давлении.Единицы энтальпии - британская тепловая единица или джоуль для энергии и Btu/lbm или Дж/кг для удельной энергии.

Количество энтальпии

Количество энтальпии вещества основано на его данной температуре. Данная температура - это значение, которая выбрано учеными и инженерами, как основание для вычислений. Это температура, при которой энтальпия вещества равна нулю Дж. Другими словами, у вещества нет доступной энергии, которую можно преобразовать в теплоту. Данная температура у различных веществ разная. Например, данная температура воды - это тройная точка (О °С), азота −150°С, а хладагентов на основе метана и этана −40°С.

Если температура вещества выше его данной температуры или изменяет состояние на газообразное при данной температуре, энтальпия выражается положительным числом. И наоборот при температуре ниже данной энтальпия вещества выражается отрицательным числом. Энтальпия используется в вычислениях для определения разницы уровней энергии между двумя состояниями. Это необходимо для настройки оборудования и определения коэффициента полезного действия процесса.

Энтальпию часто определяют как полную энергию вещества , так как она равна сумме его внутренней энергии (и) в данном состоянии наряду с его способностью проделать работу (pv). Но в действительности энтальпия не указывает полную энергию вещества при данной температуре выше абсолютного нуля (-273°С). Следовательно, вместо того, чтобы определять энтальпию как полную теплоту вещества, более точно определять ее как общее количество доступной энергии вещества, которое можно преобразовать в теплоту. H = U + pV

Внутренняя энергия

Вну́тренняя эне́ргия тела (обозначается как E или U) - это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:

Подведённая к телу теплота , измеренная в джоулях

- работа , совершаемая телом против внешних сил, измеренная в джоулях

Эта формула является математическим выражением первого начала термодинамики

Для квазистатических процессов выполняется следующее соотношение:

-температура , измеренная в кельвинах

-энтропия , измеренная в джоулях/кельвин

-давление , измеренное в паскалях

-химический потенциал

Количество частиц в системе

Идеальные газы

Согласно закону Джоуля, выведенному эмпирически, внутренняя энергия идеального газа не зависит от давления или объёма. Исходя из этого факта, можно получить выражение для изменения внутренней энергии идеального газа. По определению молярной теплоёмкости при постоянном объёме, . Так как внутренняя энергия идеального газа является функцией только от температуры, то

.

Эта же формула верна и для вычисления изменения внутренней энергии любого тела, но только в процессах при постоянном объёме (изохорных процессах ); в общем случае C V (T ,V ) является функцией и температуры, и объёма.

Если пренебречь изменением молярной теплоёмкости при изменении температуры, получим:

ΔU = νC V ΔT ,

где ν - количество вещества, ΔT - изменение температуры.

ВНУТРЕННЯЯ ЭНЕРГИЯ ВЕЩЕСТВА, ТЕЛА, СИСТЕМЫ

(Греч.: ένέργια - деятельность , энергия ). Внутренняя энергия - это часть полной энергии тела (системы тел ): E = E k + E p + U , где E k - кинетическая энергия макроскопического движения системы, E p - потенциальная энергия , обусловленная наличием внешних силовых полей (гравитационного, электрического и т.д.), U - внутренняя энергия. Внутренняя энергия вещества , тела, системы тел - функция состояния , определяемая как полный запас энергии внутреннего состояния вещества, тела, системы, изменяющийся (высвобождающийся) в процессе химической реакции , теплообмена и выполнения работы . Составляющие внутренней энергии: (а) кинетическая энергия теплового вероятностного движения частиц (атомов, молекул, ионов и др.), составляющих вещество (тело, систему); (б) потенциальная энергия частиц, обусловленная их межмолекулярным взаимодействием ; (в) энергия электронов в электронных оболочках, атомов и ионов; (г) внутриядерная энергия. Внутренняя энергия не связана с процессом изменения состояния системы. При любых изменениях системы внутренняя энергия системы вместе с ее окружением остается постоянной. То есть внутренняя энергия не утрачивается и не приобретается. Вместе с тем, энергия может переходить от одной части системы к другой или превращаться из одной формы в другую. Это одна из формулировок закона сохранения энергии - первый закон термодинамики. Часть внутренней энергии, может превращаться в работу. Эту часть внутренней энергии называют свободной энергией - G . (В химических соединениях ее называют химическим потенциалом ). Остальную часть внутренней энергии, которая не может превращаться в работу, называют связанной энергией - W b .

Энтропия

Энтропи́я (от греч. ἐντροπία - поворот, превращение) в естественных науках - мера беспорядка системы , состоящей из многих элементов . В частности, в статистической физике - мера вероятности осуществления какого-либо макроскопического состояния; в теории информации - мера неопределённости какого-либо опыта (испытания), который может иметь разные исходы, а значит и количество информации ; в исторической науке , для экспликации феномена альтернативности истории (инвариантности и вариативности исторического процесса).

В 1748 г. М. В. Ломоносов (Россия) и в 1789 г. А. Лавуазье (Франция) независимо друг от друга открыли закон сохранения массы веществ в химических реакциях. Этот закон формулируется так:

Масса всех веществ, которые вступают в химическую реакцию, равна массе всех продуктов реакции.

СН 4 + О 2 = СО 2 + Н 2 О

По закону сохранения массы:

m (СН 4) + m (О 2) = m (СО 2) + m (Н 2 О),

где m (СН 4) и m (О 2) - массы метана и кислорода, которые вступили в реакцию; m (СО 2) и m (Н 2 О) - массы углекислого газа и воды, образовавшиеся в результате реакции.

Сохранение массы веществ в химических реакциях объясняется тем, что число атомов каждого элемента до и после реакции не изменяется. В ходе химической реакции происходит только перегруппировка атомов. В реакции, например, в исходных веществ - СН 4 и О 2 - атом углерода соединяется с атомами водорода, а атомы кислорода- друг с другом; в молекулах продуктов реакции - СО 2 и Н 2 О - и атом углерода, и атомы водорода соединяются с атомами кислорода. Легко посчитать, что для сохранения числа атомов каждого элемента в данную реакцию должны вступать 1 молекула СН 4 и 2 молекулы О 2 , а в результате реакции должны образоваться 1 молекула СО 2 и 2 молекулы Н 2 О:

СН 4 + 2О 2 = СО 2 + 2Н 2 О

Данное выражение является уравнением химической реакции, или химическим уравнением .

Числа перед формулами веществ в уравнении реакции называются коэффициентами . В уравнении коэффициенты перед формулами О 2 и Н 2 О равны 2; коэффициенты перед формулами СН 4 и СО 2 равны 1 (их обычно не записывают).

Химическое уравнение - это выражение химической реакции, в котором записаны формулы исходных веществ (реагентов) и продуктов реакции, а также коэффициенты, показывающие число молекул каждого вещества.

Если известна схема реакции, то для составления химического уравнения нужно найти коэффициенты.

Составим, например, уравнение реакции, которая выражается следующей схемой:

Al + НСl = AlCl 3 + H 2

В левой части схемы атомы и входят в состав молекулы HCl в соотношении 1: 1; в правой части схемы содержатся 3 атома хлора в составе молекулы AlC1 3 и 2 атома водорода в составе молекулы Н 2 . Наименьшее общее кратное чисел 3 и 2 равно 6.

Напишем коэффициент «6» перед формулой HCl, коэффициент «2» - перед формулой AlC1 3 и коэффициент «3» - перед формулой Н;

Аl+ 6HCl = 2AlCl 3 + 3Н 2

Так как теперь в правой части содержится 2 атома , напишем коэффициент «2» перед формулой Al в левой части схемы:

2Al + 6НС1 = 2AlC1 3 + 3H 2

В результате мы получили уравнение данной реакции. Коэффициенты в химическом уравнении показывают не только число молекул, но и число молей исходных веществ и продуктов реакции. Например, это уравнение показывает, что в реакцию вступают 2 моля алюминия Аl и 6 молей , а в результате реакции образуются 2 моля хлорида алюминия AlC1 3 и 3 моля водорода Н 2).

1. Закон сохранения массы и энергии.

Это объеди­ненный закон. В него входят два закона.

I. Закон сохранения массы : Масса веществ, вступивших в реакцию, равна массе продуктов реакции.

Этот закон был открыт М. В. Ломоносовым 1748 г. и дополнен А. Л. Лавуазье в 1789 г.

В процессе реакции сохраняется масса каждого 1 элемента.

Этот закон позволяет составлять уравнения химиче­ских реакций и осуществлять расчеты на их основе. Он не является абсолютным (см. ниже). Абсолютным явля­ется закон сохранения энергии.

2.Закон сохранения энергии: Энергия не возникает из ничего и не исчезает, а только переходит из одного вида в другой.

Этот закон - результат работ А. Эйнштейна. Он ус­тановил связь между энергией и массой вещества (1905 г.):

Е = тс 2 , (6)

где с - скорость света в вакууме, равная -300 000 км/с. Поскольку в результате химической реакции выде­ляется или поглощается энергия, то, в соответствии с уравнением Эйнштейна, изменяется и масса веществ. Однако это изменение столь мало, что на практике не учитывается (так называемый дефект массы).

Образование одного моля хлороводорода из простых веществ сопровождается тепловым эффектом 92,3 кДж/моль, что соответ­ствует потере массы вещества («дефект массы») около 10 -9 г.

Следующие законы справедливы только для соедине­ний с постоянным составом молекул - дальтонидов. Они отличаются от соединений, имеющих переменный состав молекул - бертоллидов.

В сплавах металлов содержатся соединения типа М т М л, где т и n - переменные.

2. Закон постоянства состава (Ж. Л. Пруст, 1801).

Соотношение между массами химических элементов, входящих в состав данного соединения, есть величина постоянная, не зависящая от способа его получения.

3. Закон кратных отношений (Дж. Дальтон, 1803).

Если два элемента образуют друг с другом несколько химических соединений, то массы одного из элементов, приходящиеся на определенную массу другого, относятся друг к другу как небольшие целые числа.

В оксиде углерода (II) СО: М(С)/М(О) = 12/16 = 3/4, в оксиде углерода (IV) СО 2: М(С)/М(2О) = 12/32 = 3/8. Следовательно, мас­сы углерода, приходящиеся на определенную массу кислорода, в этих соединениях относятся, как:

3 / 4: 3 / 8 =2:1

4. Закон простых объемных отношений (Ж. Л. Гей-Люссак, 1808).

Объемы вступивших в реакцию газов относятся друг к другу и к объемам образовавшихся газов как небольшие целые числа.

В реакции образования аммиака в соответствии со стехиомет-рическими коэффициентами в уравнении реакции:

H 2 + 3N 2 = 2NH 3 получаем, что V(N 2) : V(Н 2) : V(NН 3) = 1:3:2.

5. Закон Авогадро (1811). В равных объемах различных газов при одинако­вых условиях (р и Т) содержится одинаковое число молекул.


Этот закон вытекает из анализа уравнения состояния идеального газа Менделеева-Клапейрона:

рV = nRТ.

Это уравнение можно записать для двух газов: p 1 V 1 = V 1 RТ 1 , р 2 V 2 = V 2 RТ 2 .

При равенстве p 1 = р 2 , T 1 = Т 2 и V i = V 2 будут равны и количества веществ газов: n 1 = n 2 или, с учетом числа Авогадро:

n 1 ·N А = n 2 · N A ,

т. е. будет равно и число молекул этих газов.

Закон Авогадро имеет следствия:

1. Одинаковое число молекул любого газа при оди­наковых условиях занимает один и тот же объем.

2. Массы газов, взятых в одинаковых объемах при одинаковых условиях (р, Т), относятся друг к другу как их молярные массы:

т 1 /т 2 = М 1 /М 2 . (7)

Это следствие вытекает из равенства количеств ве­ществ этих газов (см. выше): ν 1 = ν 2 .

Подставляя вместо количества вещества отношение его массы к молярной массе (уравнение 2) получим:

т 1 /М 1 = т 2 /М 2

т 1 /т 2 = М г /М 2 .

Второе следствие позволяет вывести уравнение для определения молярной массы неизвестного газа по извест­ной величине относительной плотности этого газа по дру­гому известному газу.

После подстановки в числитель и знаменатель левой части уравнения 7 объемов первого и второго газов, ко­торые равны, получаем:

т 1 · V 2 /т 2 · V 1 = М 1 /М 2 .

Отношение массы вещества к его объему заменяем на плотность (см. уравнение 5):

Р 1 /Р 2 = М 1 /М 2

и получаем уравнение для расчета молекулярной массы первого газа по второму:

М 1 = (ρ 1 / ρ 2)·М 2 = D 1/2 М 2 (8)

Или в общем виде:

М = D г М г (9)

где D Г - относительная плотность первого газа по вто­рому.

Если известна плотность данного газа по водороду, то используют уравнение:

М = 2DН 2 . (10)

Если известна плотность газа по воздуху, то исполь­зуют уравнение:

М = 29D возд. (11)