Физиология сердечно сосудистой системы кровообращение. Физиология сердечно-сосудистой системы: секреты дел сердечных

ФИЗИОЛОГИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ

Часть I. ОБЩИЙ План СТРОЕНИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ. ФИЗИОЛОГИЯ СЕРДЦА

1. Общий план строения и функциональное значение кардиоваскулярной системы

Сердечно-сосудистая система , наряду с дыхательной, является ключевой системой жизнеобеспечения организма , поскольку она обеспечивает непрерывную циркуляцию крови по замкнутому сосудистому руслу . Кровь же, только находясь в постоянном движении, способна выполнять свои многочисленные функции, главной из которых является транспортная, предопределяющая ряд других. Постоянная циркуляция крови по сосудистому руслу делает возможным ее непрерывный контакт со всеми органами организма, что обеспечивает, с одной стороны, поддержание постоянства состава и физико-химических свойств межклеточной (тканевой) жидкости (собственно внутренней среды для клеток тканей), а с другой – сохранение гомеостаза самой крови.

В сердечно-сосудистой системе с функциональной точки зрения выделяют:

Ø сердце – насос периодического ритмичного типа действия

Ø сосуды – пути циркуляции крови.

Сердце обеспечивает ритмичное периодическое перекачивание порций крови в сосудистое русло, сообщая им энергию, необходимую для дальнейшего продвижения крови по сосудам. Ритмичная работа сердца является залогом непрерывной циркуляции крови в сосудистом русле . Причем кровь в сосудистом русле движется пассивно по градиенту давления: из области, где оно выше, в область, где оно ниже (от артерий к венам); минимальным является давления в венах, возвращающих кровь в сердце. Кровеносные сосуды присутствуют почти во всех тканях. Их нет лишь в эпителиях, ногтях, хрящах, эмали зубов, в некоторых участках клапанов сердца и в ряде других областей, которые питаются за счет диффузии необходимых веществ из крови (например, клетки внутренней стенки крупных кровеносных сосудов).

У млекопитающих животных и человека сердце четырехкамерно (состоит из двух предсердий и двух желудочков), кардиоваскулярная система замкнута, имеются два самостоятельных круга кровообращения – большой (системный) и малый (легочный). Круги кровообращения начинаются в желудочках сосудами артериального типа (аортой и легочным стволом ), а заканчиваются в предсердиях венами (верхней и нижней полыми венами и легочными венами ). Артерии – сосуды, выносящие кровь из сердца, а вены – возвращающие кровь к сердцу.

Большой (системный) круг кровообращения начинается в левом желудочке аортой, а заканчивается в правом предсердии верхней и нижней полыми венами. Кровь, поступающая из левого желудочка в аорту, является артериальной. Продвигаясь по сосудам большого круга кровообращения, она в конечном итоге достигает микроциркуляторного русла всех органов и структур организма (в том числе самого сердца и легких), на уровне которого осуществляется ее обмен веществами и газами с тканевой жидкостью. В результате транскапиллярного обмена кровь становится венозной: она насыщается углекислым газом, конечными и промежуточными продуктами метаболизма, возможно в нее поступают какие-то гормоны или другие гуморальные факторы, отчасти отдает тканям кислород, питательные вещества (глюкозу, аминокислоты, жирные кислоты), витамины и т. д. Венозная кровь, оттекающая от различных тканей организма по системе вен, возвращается к сердцу (а именно, по верхней и нижней полым венам – в правое предсердие).

Малый (легочный) круг кровообращения начинается в правом желудочке легочным стволом, разветвляющимся на две легочные артерии, которые доставляют венозную кровь в микроциркуляторное русло, оплетающее респираторный отдел легких (дыхательные бронхиолы, альвеолярные ходы и альвеолы). На уровне этого микроциркуляторного русла осуществляется транскапиллярный обмен между венозной кровью, притекающей к легким, и альвеолярным воздухом. В результате ткаого обмена кровь насыщается кислородом, частично отдает углекислый газ и превращается в артериальную. По системе легочных вен (в количестве двух выходят из каждого легкого) артериальная кровь, оттекающая от легких, возвращается в сердце (в левое предсердие).

Таким образом, в левой половине сердца кровь артериальная, она поступает в сосуды большого круга кровообращения и доставляется ко всем органам и тканям организма, обеспечивая их снабжение

Конечный продукт" href="/text/category/konechnij_produkt/" rel="bookmark">конечных продуктов метаболизма. В правой половине сердца находится венозная кровь, которая выбрасывается в малый круг кровообращения и на уровне легких превращается в артериальную.

2. Морфо-функциональная характеристика сосудистого русла

Общая протяженность сосудистого русла человека составляет около 100тыс. километров; обычно большая их часть пуста, а интенсивно снабжаются лишь только усиленно работающие и постоянно работающие органы (сердце, головной мозг, почки, дыхательная мускулатура и некоторые другие). Сосудистое русло начинается крупными артериями , выносящими кровь из сердца. Артерии по своему ходу ветвятся, давая начала артериям более мелкого калибра (средним и мелким артериям). Войдя в кровоснабжаемый орган, артерии многократно ветвятся до артериол , представляющих собой самые мелкие сосуды артериального типа (диаметр – 15-70мкм). От артериол, в свою очередь, под прямым углом отходят метартероилы (терминальные артериолы), от которых берут начало истинные капилляры , образующие сеть . В местах отделения капилляров от метартеролы имеются прекапиллярные сфинктеры, контролирующие локальный объем крови, проходящий через истинные капилляры. Капилляры представляют собой самые мелкие сосуды в сосудистом русле (d=5-7мкм, длина – 0,5-1,1мм), их стенка не содержит в своем составе мышечную ткань, а образована всего лишь одним слоем эндотелиальных клеток и окружающей их базальной мембраной . У человека насчитывается 100-160млрд. капилляров, их общая длина составляет 60-80тыс. километров, а суммарная площадь поверхности – 1500м2. Кровь из капилляров последовательно поступает в посткапиллярные (диаметр до 30мкм), собирательные и мышечные (диаметр до 100мкм) венулы, а затем в мелкие вены. Мелкие вены, объединяясь друг с другом, образуют средние и крупные вены.

Артериолы, метартериолы, прекапиллярные сфинктеры, капилляры и венулы составляют микроциркуляторное русло , являющееся путем местного кровотока органа, на уровне которого осуществляется обмен между кровью и тканевой жидкостью. Причем наиболее эффективно такой обмен происходит в капиллярах. Венулы же как никакие другие сосуды имеют прямое отношение к течению воспалительных реакций в тканях, поскольку именно через их стенку при воспалении проходят массы лейкоцитов и плазма.

Колл" href="/text/category/koll/" rel="bookmark">коллатеральные сосуды какой-то одной артерии, соединяющиеся с ветвями других артерий, или внутрисистемные артериальные анастомозы между различными ветвями одной и той же артерии)

Ø венозные (соединяющие сосуды между различными венами или ветвями одной и той же вены)

Ø артериовенозные (анастомозы между мелкими артериями и венами, позволяющие крови течь, минуя капиллярное русло).

Функциональное назначение артериальных и венозных анастомозов состоит в повышении надежности кровоснабжения органа, тогда как артериовенозных в обеспечении возможности движения крови в обход капиллярному руслу (в большом количестве встречаются в коже, движение крови по которым уменьшает потери тепла с поверхности тела).

Стенка всех сосудов , за исключением капилляров , состоит из трех оболочек :

Ø внутренней оболочки , образованной эндотелием, базальной мембраной и подэндотелиальным слоем (прослойка рыхлой волокнистой соединительной ткани); эта оболочка отделена от средней оболочки внутренней эластической мембраной ;

Ø средней оболочки , в состав которой входят гладкомышечные клетки и плотная волокнистая соединительная ткань , в межклеточном веществе которой содержатся эластические и коллагеновые волокна ; отделена от наружной оболочки наружной эластической мембраной ;

Ø наружной оболочки (адвентиции), образованной рыхлой волокнистой соединительной тканью , питающей стенку сосуда; в частности, в этой оболочке проходят мелкие сосуды, обеспечивающие питание клеток самой сосудистой стенки (т. н. сосуды сосудов).

В сосудах различного типа толщина и морфология этих оболочек имеет свои особенности. Так, стенки артерий гораздо толще таковых вен, причем в наибольшей мере у артерий и вен отличается по толщине их средняя оболочка, благодаря чему стенки артерий являются более упругими, чем таковые вен. Вместе с тем наружная оболочка стенки вен толще таковой артерий, и они, как правило, имеют больший диаметр по сравнению с одноименными артериями. Мелкие, средние и некоторые крупные вены имеют венозные клапаны , представляющие собой полулунные складки их внутренней оболочки и препятствующие обратному току крови в венах. Наибольшее количество клапанов имеют вены нижних конечностей, тогда как обе полые вены, вены головы и шеи, почечные вены, воротная и легочные вены клапанов не имеют. Стенки крупных, средних и мелких артерий, а также артериол характеризуются некоторыми особенностями строения, касающимися их средней оболочки. В частности, в стенках крупных и некоторых средних артерий (сосуды эластического типа) эластические и коллагеновые волокна преобладают над гладкомышечными клетками, в результате чего такие сосуды отличаются очень большой эластичностью, необходимой для преобразования пульсирующего кровотока в постоянный. Стенки мелких артерий и артериол, напротив, характеризуются преобладанием гладкомышечных волокон над соединительнотканными, что позволяет им изменять диаметр своего просвета в довольно широких пределах и регулировать таким образом уровень кровенаполнения капилляров. Капилляры же, не имеющие в составе своей стенки средней и наружной оболочек, не способны активно изменять свой просвет: он изменяется пассивно в зависимости от степени их кровенаполнения, зависящей от величины просвета артериол.


Рис.4. Схема строения стенки артерии и вены


Аорта" href="/text/category/aorta/" rel="bookmark">аорта , легочные артерии, общая сонная и подвздошная артерии;

Ø сосуды резистивного типа (сосуды сопротивления) – преимущественно артериолы, самые мелкие сосуды артериального типа, в стенке которых имеется большое количество гладкомышечных волокон, позволяющее в широких пределах изменять свой просвет; обеспечивают создание максимального сопротивления движению крови и принимают участие в ее перераспределении между органами, работающими с разной интенсивностью

Ø сосуды обменного типа (преимущественно капилляры, отчасти артериолы и венулы, на уровне которых осуществляется транскапиллярный обмен)

Ø сосуды емкостного (депонирующего) типа (вены), которые в связи с небольшой толщиной своей средней оболочки отличаются хорошей податливостью и могут довольно сильно растягиваться без сопутствующего резкого повышения давления в них, благодаря чему зачастую служат депо крови (как правило, около 70% объема циркулирующей крови находится в венах)

Ø сосуды анастомозирующего типа (или шунтирующие сосуды: артреиоартеральные, веновенозные, артериовенозные).

3. Макро-микроскопическое строение сердца и его функциональное значение

Сердце (cor) – полый мышечный орган, нагнетающий кровь в артерии и принимающий ее из вен. Располагается в грудной полости, в составе органов среднего средостения, интраперикардиально (внутри сердечной сумки – перикарда). Имеет коническую форму; его продольная ось направлена косо – справа налево, сверху вниз и сзади наперед, поэтому оно на две трети залегает в левой половине грудной полости. Верхушка сердца обращена вниз, влево и вперед, а более широкое основание – кверху и кзади. В сердце выделяют четыре поверхности:

Ø переднюю (грудинно-реберную), выпуклая, обращена к задней поверхности грудины и ребер;

Ø нижнюю (диафрагмальная или задняя);

Ø боковые или легочные поверхности.

Средняя масса сердца у мужчин 300г, у женщин – 250г. Наибольший поперечный размер сердца – 9-11см, переднезадний – 6-8см, длина сердца – 10-15см.

Сердце начинает закладываться на 3-ей неделе внутриутробного развития, его разделение на правую и левую половину происходит к 5-6-ой неделе; а начинает оно работать вскоре после своей закладки (на 18-20 день), делая по одному сокращению каждую секунду.


Рис. 7. Сердце (вид спереди и сбоку)

Сердце человека состоит из 4-ех камер: двух предсердий и двух желудочков. Предсердия принимают кровь из вен и проталкивают ее в желудочки. В целом их нагнетательная способность гораздо меньше таковой желудочков (желудочки в основном наполняются кровью во время общей паузы сердца, тогда как сокращение предсердий способствует лишь дополнительной подкачке крови), основная же роль предсердий состоит в том, что они являются временными резервуарами крови . Желудочки принимают кровь, притекающую из предсердий, и перекачивают ее в артерии (аорту и легочный ствол). Стенка предсердий (2-3мм) тоньше таковой желудочков (5-8мм у правого желудочка и 12-15мм у левого). На границе между предсердиями и желудочками (в предсердно-желудочковой перегородке) имеются атриовентрикулярные отверстия, в области которых находятся створчатые атриовентрикулярные клапаны (двухстворчатый или митральный в левой половине сердца и трехстворчатый в правой), препятствующие обратному току крови из желудочков в предсердия в момент систолы желудочков . В месте выхода аорты и легочного ствола из соответствующих желудочков локализованы полулунные клапаны , препятствующие обратному току крови из сосудов в желудочки в момент диастолы желудочков . В правой половине сердца кровь является венозной, а в левой его половине – артериальной.

Стенка сердца состоит из трех слоев :

Ø эндокард – тонкая внутренняя оболочка, выстилает изнутри полости сердца, повторяя их сложный рельеф; в его состав входят преимущественно соединительная (рыхлая и плотная волокнистые) и гладкомышечная ткани. Дупликатуры эндокарда образуют атриовентрикулярные и полулунные клапаны, а также заслонки нижней полой вены и венечного синуса

Ø миокард – средний слой стенки сердца, самый толстый, представляет собой сложную многотканевую оболочку, основным компонентом которой является сердечная мышечная ткань. Миокард имеет наибольшую толщину в левом желудочке, а наименьшую – в предсердиях. Миокард предсердий состоит из двух слоев : поверхностного (общего для обоих предсердий, в котором мышечные волокна расположены поперечно ) и глубокого (раздельного для каждого из предсердий , в котором мышечные волокна следуют продольно , здесь встречаются и круговые волокна, петлеобразно в виде сфинктеров охватывающие устья вен, впадающих в предсердия). Миокард желудочков трехслойный : наружный (образован косо ориентированными мышечными волокнами) и внутренний (образован продольно ориентированными мышечными волокнами) слои являются общими для миокарда обоих желудочков, а расположенный между ними средний слой (образован круговыми волокнами ) – отдельным для каждого из желудочков.

Ø эпикард – наружная оболочка сердца, является висцеральным листком серозной оболочки сердца (перикарда), построен по типу серозных оболочек и состоит из тонкой пластинки соединительной ткани, покрытой мезотелием.

Миокард сердца , обеспечивающий периодическое ритмичное сокращение его камер, образован сердечной мышечной тканью (разновидность поперечнополосатой мышечной ткани). Структурно-функциональной единицей сердечной мышечной ткани служит сердечное мышечное волокно . Оно является исчерченным (сократительный аппарат представлен миофибриллами , ориентированными параллельно продольной его оси, занимающими периферическое положение в волокне, тогда как ядра находятся в центральной части волокна), характеризуется наличием хорошо развитого саркоплазматического ретикулюма и системы Т-трубочек . Но его отличительной особенностью служит тот факт, что оно – многоклеточное образование , представляющее собой совокупность последовательно уложенных и соединенных с помощью вставочных дисков сердечных мышечных клеток – кардиомиоцитов. В области вставочных дисков имеется большое количество щелевых контактов (нексусов) , устроенных по типу электрических синапсов и обеспечивающих возможность непосредственного проведения возбуждения с одного кардиомиоцита на другой. В связи с тем, что сердечное мышечное волокно – многоклеточное образование, его называют функциональным волокном.

https://pandia.ru/text/78/567/images/image009_18.jpg" width="319" height="422 src=">

Рис. 9. Схема строения щелевого контакта (нексуса). Щелевой контакт обеспечивает ионное и метаболическое сопряжение клеток . Плазматические мембраны кардиомиоцитов в области образования щелевого контакта сближены и разделены узкой межклеточной щелью шириной 2-4 нм. Связь между мембранами соседних клеток обеспечивает трансмембранный белок цилиндрической конфигурации – коннексон. Молекула коннексона состоит из 6 субъединиц коннексина, располагающихся радиально и ограничивающих собой полость (канал коннексона, диаметр 1,5 нм). Две молекулы коннексона соседних клеток соединяются в межмембранном пространстве между собой, в результате чего образуется единый канал нексуса, который может пропускать ионы и низкомолекулярные вещества с Mr до 1,5 кД. Следовательно, нексусы делают возможным движение не только неорганических ионов из одного кардиомиоцита в другой (что обеспечивает непосредственную передачу возбуждения), но и низкомолекулярных органических веществ (глюкозы, аминокислот и т. д.)

Кровоснабжение сердца осуществляется коронарными артериями (правой и левой), отходящими от луковицы аорты и составляющими вместе с микроциркуляторынм руслом и коронарными венами (собираются в венечный синус, впадающий в правое предсердие) коронарный (венечный) круг кровообращения , который является частью большого круга.

Сердце относится к числу органов, работающих на протяжении жизни постоянно. За 100 лет человеческой жизни сердце совершает около 5 миллиардов сокращений. Причем интенсивность работы сердца зависит от уровня обменных процессов в организме. Так, у взрослого человека нормальная частота сердечных сокращений в покое составляет 60-80 уд/мин, тогда как у более мелких животных с большей относительной площадью поверхности тела (площадью поверхности на единицу массы) и соответственно более высоким уровнем обменных процессов интенсивность сердечной деятельности гораздо выше. Так у кошки (средний вес 1,3кг) частота сердечных сокращений 240 уд/мин, у собаки – 80 уд/мин, у крысы (200-400г) – 400-500 уд/мин, а у синицы московки (масса около 8г) – 1200 уд/мин. Частота сердечных сокращений у крупных млекопитающих с относительно низким уровнем обменных процессов гораздо ниже таковой человека. У кита (вес 150тонн) сердце делает 7 сокращений в минуту, а у слона (3 тонны) – 46 уд/мин.

Русский физиолог подсчитал, что в течение человеческой жизни сердце совершает работу, равную усилию, которого было бы достаточно, чтобы поднять железнодорожный состав на высочайшую вершину Европы – гору Монблан (высота 4810м). За сутки у человека, находящегося в относительном покое, сердце перекачивает 6-10тонн крови, а в течение жизни – 150-250 тыс. тонн.

Движение крови в сердце, так же как и в сосудистом русле, осуществляется пассивно по градиенту давления. Так, нормальный сердечный цикл начинается с систолы предсердий , в результате которой давление в предсердиях несколько повышается, и порции крови перекачиваются в расслабленные желудочки, давление в которых близко к нулю. В момент следующей за систолой предсердий систолы желудочков давление в них нарастает, и, когда оно становится выше такового в проксимальном отделе сосудистого русла, кровь из желудочков изгоняется в соответствующие сосуды. В момент общей паузы сердца происходит основное наполнение желудочков кровью, пассивно возвращающейся к сердцу по венам; сокращение же предсердий обеспечивает дополнительную подкачку незначительного количества крови в желудочки.

https://pandia.ru/text/78/567/images/image011_14.jpg" width="552" height="321 src=">Рис. 10. Схема работы сердца

Рис. 11. Схема, показывающая направление тока крови в сердце

4. Структурная организация и функциональная роль проводящей системы сердца

Проводящая система сердца представлена совокупностью проводящих кардиомиоцитов, формирующих

Ø синусно-предсердный узел (синоатриальный узел, узел Кейт-Флака, заложен в правом предсердии, у места впадения полых вен),

Ø предсердно-желудочковый узел (атриовентрикулярный узел, узел Ашоффа-Тавара, заложен в толще нижнего отдела межпредсердной перегородки, ближе к правой половине сердца),

Ø пучок Гиса (предсердно-желудочковый пучок, находится в верхней части межжелудочковой перегородки) и его ножки (спускаются от пучка Гиса вдоль внутренних стенок правого и левого желудочков),

Ø сеть диффузных проводящих кардиомиоцитов , образующих волокна Прукинье (проходят в толще рабочего миокарда желудочков, как правило, примыкая к эндокарду).

Кардиомиоциты проводящей системы сердца являются атипическими миокардиальными клетками (в них слабо развит сократительный аппарат и система Т-трубочек, они не играют существенной роли в развитии напряжения в полостях сердца в момент их систолы), которые обладают способностью к самостоятельной генерации нервных импульсов с определенной частотой (автоматии ).

Вовлечение" href="/text/category/vovlechenie/" rel="bookmark">вовлекая в возбуждение миокрадиоциты межжелудочковой перегородки и верхушки сердца, а затем по разветвлениям ножек и волокнам Пуркинье возвращается к основанию желудочков. Благодаря этому вначале сокращаются верхушки желудочков, а потом уже их основания.

Таким образом, проводящая система сердца обеспечивает :

Ø периодическую ритмическую генерацию нервных импульсов , инициирующих сокращение камер сердца с определенной частотой;

Ø определенную последовательность в сокращении камер сердца (вначале возбуждаются и сокращаются предсердия, подкачивая кровь в желудочки, а уже потом желудочки, перекачивающие кровь в сосудистое русло)

Ø почти синхронный охват возбуждением рабочего миокарда желудочков , а значит, и высокую эффективность систолы желудочков, что необходимо для создания в их полостях определенного давления, несколько превышающего таковое в аорте и легочном стволе, а, следовательно, для обеспечения определенного систолического выброса крови.

5. Электрофизиологические характеристики миокардиальных клеток

Проводящие и рабочие кардиомиоциты являются возбудимыми структурами , т. е. обладают способностью к генерации и проведению потенциалов действия (нервных импульсов). Причем для проводящих кардиомиоцитов свойственна автоматия (способность к самостоятельной периодической ритмической генерации нервных импульсов ), тогда как рабочие кардиомиоциты возбуждаются в ответ на приходящее к ним возбуждение от проводящих или других уже возбужденных рабочих миокардиальных клеток.

https://pandia.ru/text/78/567/images/image013_12.jpg" width="505" height="254 src=">

Рис. 13. Схема потенциала действия рабочего кардиомиоцита

В потенциале действия рабочих кардиомиоцитов выделяют следующие фазы:

Ø фаза быстрой начальной деполяризации , обусловлена быстрым входящим потенциалзависимым натриевым током , возникает вследствие активации (открытия быстрых активационных ворот) быстрых потенциалзависимых натриевых каналов; характеризуется большой крутизной нарастания, поскольку обуславливающий ее ток обладает способностью к самообновлению.

Ø фаза плато ПД , обусловлена потенциалзависимым медленным входящим кальциевым током . Начальная деполяризация мембраны, вызванная входящим натриевым током, приводит к открытию медленных кальциевых каналов , через посредство которых ионы кальция по концентрационному градиенту входят внутрь кардиомиоцита; эти каналы в гораздо меньшей степени, но все же проницаемы и для ионов натрия. Вход кальция и отчасти натрия в кардиомиоцит через медленные кальциевые каналы несколько деполяризует его мембрану (но гораздо слабее, чем предшествующий этой фазе быстрый входящий натриевый ток). В эту фазу быстрые натриевые каналы, обеспечивающие фазу быстрой начальной деполяризации мембраны, инактивируются, и клетка переходит в состояние абсолютной рефрактерности . В этот период происходит и постепенная активация потенциалзависимых калиевых каналов. Эта фаза является самой длительной фазой ПД (составляет 0,27с при общей длительности ПД 0,3с), в результате чего кардиомиоцит большую часть времени в период генерации ПД находится в состоянии абсолютной рефрактерности. Причем длительность одиночного сокращения миокардиальной клетки (около 0,3с) примерно равна таковой ПД, что вместе с продолжительным периодом абсолютной рефрактерности делает невозможным развитие тетанического сокращения сердечной мышцы, которое было бы равнозначно остановке сердца. Следовательно, сердечная мышца способно к развитию только одиночных сокращений .

Основное значение сердечно-сосудистой системы состоит в снабжении кровью органов и тканей. Сердечно-сосудистая система состоит из сердца, кровеносных и лимфатических сосудов.

Сердце человека - это полый мышечный орган, разделенный вертикальной перегородкой на левую и правую половины, а горизонтальной на четыре полости: два предсердия и два желудочка. Сердце окружено как мешком соединительнотканной оболочкой - перикардом. В сердце существуют два вида клапанов: атриовентрикулярные (отделяющие предсердия от желудочков) и полулунные (между желудочками и крупными сосудами - аортой и легочной артерией). Основная роль клапанного аппарата состоит в препятствии обратному току крови.

В камерах сердца берут свое начало и заканчиваются два круга кровообращения.

Большой круг начинается аортой, которая отходит от левого желудочка. Аорта переходит в артерии, артерии в артериолы, артериолы в капилляры, капилляры в венулы, венулы в вены. Все вены большого круга собирают свою кровь в полые вены: верхнюю - от верхней части туловища, нижнюю - от нижней. Обе вены впадают в правое предсердие.

Из правого предсердия кровь поступает в правый желудочек, где начинается малый круг кровообращения. Кровь из правого желудочка поступает в легочный ствол, который несет кровь в легкие. Легочные артерии ветвятся до капилляров, затем кровь собирается в венулы, вены и поступает в левое предсердие где и заканчивается малый круг кровообращения. Основная роль большого круга - это обеспечение обмена веществ организма, основная роль малого круга - насыщение крови кислородом.

Основными физиологическими функциями сердца являются: возбудимость, способность проводить возбуждение, сократимость, автоматизм.

Под сердечным автоматизмом понимают способность сердца сокращаться под воздействием импульсов возникающих в нем самом. Эту функцию выполняет атипичная сердечная ткань которая состоит из: синоаурикулярного узла, атриовентрикулярного узла, пучка Гисса. Особенностью автоматизма сердца является то, что вышележащий участок автоматизма подавляет автоматизм нижележащего. Ведущим водителем ритма является синоаурикулярный узел.

Под сердечным циклом понимают одно полное сокращение сердца. Сердечный цикл состоит из систолы (период сокращения) и диастолы (период расслабления). Систола предсердий обеспечивает поступление крови в желудочки. Затем предсердия переходят в фазу диастолы, которая продолжается в течение всей систолы желудочков. Во время диастолы желудочки наполняются кровью.

Ритм сердца - это количество сердечных сокращений за одну минуту.

Аритмия - нарушение ритма сердечных сокращений, тахикардия - учащение частоты сердечных сокращений (ЧСС), возникает часто при усилении влияния симпатической нервной системы, брадикардия - урежение ЧСС, возникает часто при усилении влияния парасимпатической нервной системы.

Экстрасистолия - это внеочередное сердечное сокращение.

Сердечные блокады - нарушение функции проводимости сердца, обусловленные поражением атипичных сердечных клеток.

К показателям сердечной деятельности относят: ударный объем - количество крови, которое выбрасывается в сосуды при каждом сокращении сердца.

Минутный объем - это количество крови, которое сердце выбрасывает в легочный ствол и аорту в течение минуты. Минутный объем сердца увеличивается при физической нагрузке. При умеренной нагрузке минутный объем сердца повышается как за счет роста силы сердечных сокращений, так и за счет частоты. При нагрузках большой мощности только за счет роста ЧСС.

Регуляция сердечной деятельности осуществляется за счет нейрогуморальных воздействий, изменяющих интенсивность сокращений сердца и приспосабливающих его деятельность к потребностям организма и условиям существования. Влияние нервной системы на деятельность сердца осуществляется за счет блуждающего нерва (парасимпатический отдел ЦНС) и за счет симпатических нервов (симпатический отдел ЦНС). Окончания этих нервов изменяют автоматизм синоаурикулярного узла, скорость проведения возбуждения по проводящей системе сердца, интенсивность сердечных сокращений. Блуждающий нерв при возбуждении уменьшает ЧСС и силу сердечных сокращений, снижает возбудимость и тонус сердечной мышцы, скорость проведения возбуждения. Симпатические нервы наоборот учащают ЧСС, увеличивают силу сердечных сокращений, повышают возбудимость и тонус сердечной мышцы, а также скорость проведения возбуждения. Гуморальные влияния на сердце реализуются гормонами, электролитами, и другими биологически активными веществами, являющимися продуктами жизнедеятельности органов и систем. Ацетилхолин (АЦХ) и норадреналин (НА) - медиаторы нервной системы - оказывают выраженное влияние на работу сердца. Действие АЦХ аналогично действию парасимпатической, а норадреналина действию симпатической нервной системы.

Кровеносные сосуды. В сосудистой системе различают: магистральные (крупные эластические артерии), резистивные (мелкие артерии, артериолы, прекапиллярные сфинктеры и посткапиллярные сфинктеры, венулы), капилляры (обменные сосуды), емкостные сосуды (вены и венулы), шунтирующие сосуды.

Под артериальным давлением (АД) понимают давление в стенках кровеносных сосудов. Величина давления в артериях ритмически колеблется, достигая наиболее высокого уровня в период систолы и снижается в момент диастолы. Это объясняется тем, что выбрасываемая при систоле кровь встречает сопротивление стенок артерий и массы крови, заполняющей артериальную систему, давление в артериях повышается и возникает некоторое растяжение их стенок. В период диастолы АД понижается и поддерживается на определенном уровне за счет эластического сокращения стенок артерий и сопротивления артериол, благодаря чему продолжается продвижение крови в артериолы, капилляры и вены. Следовательно, величина АД пропорциональна количеству крови, выбрасываемой сердцем в аорту (т.е. ударному объему) и периферическому сопротивлению. Различают систолическое (САД), диастолическое (ДАД), пульсовое и среднее АД.

Систолическое АД - это давление обусловленное систолой левого желудочка (100 - 120 мм рт.ст.). Диастолическое давление - определяется тонусом резистивных сосудов в период диастолы сердца (60-80 мм рт.ст.). Разность между САД и ДАД называется пульсовым давлением. Среднее АД равняется сумме ДАД и 1/3 пульсового давления. Среднее АД выражает энергию непрерывного движения крови и постоянно для данного организма. Повышение артериального давления называют гипертензией. Понижение АД называют гипотензией. АД выражают в миллиметрах ртутного столба. Нормальное систолическое давление колеблется в пределах 100-140 мм рт.ст., диастолическое давление 60-90 мм рт.ст.

Обычно давление измеряется в плечевой артерии. Для этого на обнаженное плечо обследуемого накладывают и закрепляют манжетку, которая должна прилегать настолько плотно, чтобы между ней и кожей проходил один палец. Край манжетки, где имеется резиновая трубка, должен быть обращен книзу и располагаться на 2-3 см выше локтевой ямки. После закрепления манжетки обследуемый удобно укладывает руку ладонью вверх, мышцы руки должны быть расслаблены. В локтевом сгибе находят по пульсации плечевую артерию, прикладывают к ней фонендоскоп, закрывают вентиль сфигмоманометра и накачивают воздух в манжету и манометр. Высота давления воздуха в манжете, сдавливающей артерию, соответствует уровню ртути на шкале прибора. Воздух нагнетается в манжету до тех пор, пока давление в ней не превысит примерно на 30 мм рт.ст. Тот уровень, при котором перестает определятся пульсация плечевой или лучевой артерии. После этого вентиль открывают и начинают медленно выпускать воздух из манжеты. Одновременно фонендоскопом выслушивают плечевую артерию и следят за показанием шкалы манометра. Когда давление в манжете станет чуть ниже систолического, над плечевой артерией начинают выслушиваться тоны, синхронные с деятельностью сердца. Показание манометра в момент первого появления тонов отмечают как величину систолического давления. Эта величина обычно указывается с точностью до 5 мм (например 135, 130, 125 мм рт.ст. и т.д.). При дальнейшем снижении давления в манжете тоны постепенно ослабевают и исчезают. Это давление диастолическое.

АД у здоровых людей подвержено значительным физиологическим колебаниям в зависимости от физической нагрузки, эмоционального напряжения, положения тела, времени приема пищи и др. факторов. Наиболее низкое давление бывает утром, натощак, в покое, т.е в тех условиях, в которых определяется основной обмен, поэтому такое давление называется основным или базальным. При первом измерении уровень АД может оказаться выше, чем в действительности, что связано с реакцией клиента на процедуру измерения. Поэтому рекомендуется не снимая манжеты и лишь выпуская из нее воздух, измерить давление несколько раз и учитывать последнюю наименьшую цифру. Кратковременное повышение АД может наблюдаться при большой физической нагрузке, особенно у нетренированных лиц, при психическом возбуждении, употреблении алкоголя, крепкого чая, кофе, при неумеренном курении и сильных болях.

Пульсом называют ритмические колебания стенки артерий, обусловленные сокращением сердца, выбросом крови в артериальную систему и изменением в ней давления в течение систолы и диастолы.

Распространение пульсовой волны связано со способностью стенок артерий к эластическому растяжению и спадению. Как правило, пульс начинают исследовать на лучевой артерии, поскольку она располагается поверхностно, непосредственно под кожей и хорошо прощупывается между шиловидным отростком лучевой кости и сухожилием внутренней лучевой мышцы. При пальпации пульса кисть исследуемого охватывают правой рукой в области лучезапястного сустава так, что бы 1 палец располагался на тыльной стороне предплечья, а остальные на передней его поверхности. Нащупав артерию, прижимают ее к подлежащей кости. Пульсовая волна под пальцами ощущается в виде расширения артерии. Пульс на лучевых артериях может быть неодинаковым, поэтому в начале исследования нужно пальпировать его на обеих лучевых артериях одновременно, двумя руками.

Исследование артериального пульса дает возможность получать важные сведения о работе сердца и состоянии кровообращения. Это исследование проводится в определенном порядке. Вначале надо убедиться что пульс одинаково прощупывается на обеих руках. Для этого пальпируют одновременно две лучевые артерии и сравнивают величину пульсовых волн на правой и левой руках (в норме она одинакова). Величина пульсовой волны на одной руке может оказаться меньше, чем на другой, и тогда говорят о различном пульсе. Он наблюдается при односторонних аномалиях строения или расположения артерии, ее сужении, сдавлении опухолью, рубцами др. Различный пульс будет возникать не только при изменении лучевой артерии, но и при аналогичных изменениях вышерасположенных артерий - плечевой, подключичной. Если выявлен различный пульс, дальнейшее его исследование проводят на той руке, где пульсовые волны лучше выражены.

Определяются следующие свойства пульса: ритм, частота, напряжение, наполнение, величина и форма. У здорового человека сокращения сердца и пульсовой волны следуют друг за другом через равные промежутки времени, т.е. пульс ритмичен. В нормальных условиях частота пульса соответствует частоте сердечных сокращений и равна 60-80 ударов в минуту. Частоту пульса подсчитывают в течении 1 мин. В положении лежа пульс в среднем на 10 ударов меньше, чем стоя. У физически развитых людей частота пульса ниже 60 уд/мин, а у тренированных спортсменов до 40-50 уд/мин, что указывает на экономичную работу сердца. В состоянии покоя частота сердечных сокращений (ЧСС) зависит от возраста, пола, позы. С возрастом она уменьшается.

Пульс у находящегося в состоянии покоя здорового человека ритмичный, без перебоев, хорошего наполнения и напряжения. Ритмичным считается такой пульс, когда количество ударов за 10 с отмечается от предыдущего подсчета за такой же период времени не более, чем на один удар. Для подсчета пользуются секундомером или обычными часами с секундной стрелкой. Чтобы получить сравниваемые данные, измеряйте пульс всегда в одном и том же положении (лежа, сидя или стоя). Например, утром измеряйте пульс сразу после сна лежа. Перед занятием и после них - сидя. Определяя величину пульса следует помнить, что сердечно- сосудистая система очень чувствительна к различным влияниям (эмоциональным, физическим нагрузкам и др.). Вот почему наиболее спокойный пульс регистрируется утром, сразу после пробуждения, в горизонтальном положении. Перед тренировкой он может существенно повышаться. Во время занятий контроль за ЧСС можно проводить путем подсчета пульса за 10 с. Учащение пульса в покое на следующий день после тренировки (особенно при плохом самочувствии, нарушении сна, нежелание тренироваться и т.д.) свидетельствует об утомлении. Для лиц, регулярно занимающихся физическими упражнениями, ЧСС в покое более 80 уд/мин расценивается как признак утомления. В дневнике самоконтроля записывается число ударов пульса и отмечается его ритмичность.

Для оценки физической работоспособности используют данные о характере и продолжительности процессов, полученных в результате выполнения различных функциональных проб с регистрацией ЧСС после нагрузки. В качестве таких проб можно использовать следующие упражнения.

Не очень физически подготовленные люди, а также дети делают 20 глубоких и равномерных приседаний за 30 с (приседая, вытянуть руки вперед, вставая - опустить), затем сразу же, сидя, подсчитывают пульс за 10с в течение 3 мин. Если пульс восстанавливается к концу первой минуты - отлично, к концу 2-й - хорошо, к концу 3-й - удовлетворительно. При этом пульс учащается не более чем на 50-70% от исходной величины. Если в течение 3 мин пульс не восстанавливается - неудовлетворительно. Бывает что учащение пульса происходит на 80% и более по сравнению с исходным, что указывает на снижение функционального состояния сердечно-сосудистой системы.

При хорошей физической подготовленности используют бег на месте в течение 3 мин в умеренном темпе (180 шагов в минуту) с высоким подниманием бедра и движениями рук, как при обычном беге. Если пульс учащается не более чем на 100% и восстанавливается на 2-3 минуте - отлично, на 4-й - хорошо, на 5-й - удовлетворительно. Если пульс возрастает более чем на 100%, а восстановление происходит более чем за 5 минут, то такое состояние оценивается как неудовлетворительное.

Пробы с приседаниями или с дозированным бегом на месте не следует проводить сразу после еды или после занятий. По ЧСС во время занятий можно судить о величине и интенсивности физической нагрузки для данного человека и режим работы (аэробный, анаэробный) в котором проводится тренировка.

Микроциркуляторное звено является центральным в сердечно-сосудистой системе. Оно обеспечивает основную функцию крови - транскапиллярный обмен. Микроциркуляторное звено представлено мелкими артериями, артериолами, капиллярами, венулами, мелкими венами. Транскапиллярный обмен происходит в капиллярах. Он возможен благодаря особому строению капилляров, стенка которых обладает двухсторонней проницаемостью. Проницаемость капилляров - это активный процесс, который обеспечивает оптимальную среду для нормальной жизнедеятельности клеток организма. Кровь из микроциркуляторного русла попадает в вены. В венах давление низкое от 10-15 мм.рт.ст в мелких до 0 мм.рт.ст. в крупных. Движению крови по венам способствует ряд факторов: работа сердца, клапанный аппарат вен, сокращение скелетных мышц, присасывающая функция грудной клетки.

При физической нагрузке существенно возрастают потребности организма, в частности в кислороде. Наблюдается условнорефлекторное усиление работы сердца, поступление части депонированной крови в общий круг кровообращения, увеличивается выброс адреналина мозговым веществом надпочечников. Адреналин стимулирует работу сердца, суживает сосуды внутренних органов, что ведет к подъему АД, росту линейной скорости кровотока через сердце, мозг, легкие. Значительно во время физической активности возрастает кровоснабжение мышц. Причиной этого является интенсивный обмен веществ в мышце, что способствует скоплению в ней продуктов метаболизма (углекислого газа, молочной кислоты и др.), которые обладают выраженным сосудорасширяющим эффектом и способствуют более мощному раскрытию капилляров. Расширение диаметра сосудов мышц не сопровождается падением артериального давления в результате активации прессорных механизмов в ЦНС, а так же повышенной концентрации глюкокортикоидов и катехоламинов в крови. Работа скелетных мышц усиливает венозный кровоток, что способствует быстрому венозному возврату крови. А повышение содержания продуктов метаболизма в крови, в частности углекислоты ведет к стимуляции дыхательного центра, увеличению глубины и частоты дыхания. Это в свою очередь увеличивает отрицательное давление грудной клетки, важнейшего механизма способствующего увеличению венозного возврата к сердцу.

Литература

1. Ермолаев Ю.А. Возрастная физиология. М., Высшая школа,1985 год

2. Хрипкова А.Г. Возрастная физиология. - М., Просвещения, 1975.

3. Хрипкова А.Г. Анатомия, физиология и гигиена человека. - М., Просвещения, 1978.

4. Хрипкова А.Г., Антропова М.В., Фарбер Д.А. Возрастная физиология и школьная гигиена. - М., Просвещения, 1990.

5. Матюшонок М.Г. и др. Физиология и гигиена детей и подростков. - Минск,1980 год

6. Леонтьева Н.Н., Маринова К.В. Анатомия и физиология детского организма (1 и 2 части). М., Просвещение, 1986.


Похожая информация.


К системе кровообращения относятся сердце и сосуды - кровеносные и лимфатические. Основное значение системы кровообращения состоит в снабжении кровью органов и тканей.

Сердце представляет собой биологический насос, благодаря работе которого кровь движется по замкнутой системе сосудов. В организме человека имеется 2 круга кровообращения.

Большой круг кровообращения начинается аортой, которая отходит от левого желудочка, и заканчивается сосудами, впадающими в правое предсердие. Аорта дает начало крупным, средним и мелким артериям. Артерии переходят в артериолы, которые заканчиваются капиллярами. Капилляры широкой сетью пронизывают все органы и ткани организма. В капиллярах кровь отдает тканям кислород и питательные вещества, а из них в кровь поступают продукты обмена веществ, в том числе и углекислый газ. Капилляры переходят в венулы, кровь из которых попадает в мелкие, средние и крупные вены. Кровь от верхней части туловища поступает в верхнюю полую вену, от нижней - в нижнюю полую вену. Обе эти вены впадают в правое предсердие, где заканчивается большой круг кровообращения.

Малый круг кровообращения (легочный) начинается легочным стволом, который отходит от правого желудочка и несет в легкие венозную кровь. Легочный ствол разветвляется на две ветви, идущие к левому и правому легкому. В легких легочные артерии делятся на более мелкие артерии, артериолы и капилляры. В капиллярах кровь отдает углекислый газ и обогащается кислородом. Легочные капилляры переходят в венулы, которые затем образуют вены. По четырем легочным венам артериальная кровь поступает в левое предсердие.

Сердце.

Сердце человека - полый мышечный орган. Сплошной вертикальной перегородкой сердце делится на левую и правую половины. Горизонтальная перегородка вместе с вертикальной делит сердце на четыре камеры. Верхние камеры - предсердия, нижние - желудочки.

Стенка сердца состоит из трех слоев. Внутренний слой представлен эндотелиальной оболочкой (эндокард , выстилает внутреннюю поверхность сердца). Средний слой (миокард ) состоит из поперечнополосатой мышцы. Наружная поверхность сердца покрыта серозной оболочкой (эпикард ), являющейся внутренним листком околосердечной сумки - перикарда. Перикард (сердечная сорочка) окружает сердце, как мешок, и обеспечивает его свободное движение.

Клапаны сердца. Левое предсердие от левого желудочка отделяет двустворчатый клапан . На границе между правым предсердием и правым желудочком находится трехстворчатый клапан . Клапан аорты отделяет ее от левого желудочка, а клапан легочного ствола отделяет его от правого желудочка.

При сокращении предсердий (систола ) кровь из них поступает в желудочки. При сокращении желудочков кровь с силой выбрасывается в аорту и легочный ствол. Расслабление (диастола ) предсердий и желудочков способствует наполнению полостей сердца кровью.

Значение клапанного аппарата. Во время диастолы предсердий предсердно-желудочковые клапаны открыты, кровь, поступающая из соответствующих сосудов, заполняет не только их полости, но и желудочки. Во время систолы предсердий желудочки полностью заполняются кровью. При этом исключается возврат крови в полые и легочные вены. Это связано с тем, что в первую очередь сокращается мускулатура предсердий, образующая устья вен. По мере наполнения полостей желудочков кровью створки предсердно-желудочковых клапанов плотно смыкаются и отделяют полость предсердий от желудочков. В результате сокращения сосочковых мышц желудочков в момент их систолы сухожильные нити створок предсердно-желудочковых клапанов натягиваются и не дают им вывернуться в сторону предсердий. К концу систолы желудочков давление в них становится больше давления в аорте и легочном стволе. Это способствует открытию полулунных клапанов аорты и легочного ствола , и кровь из желудочков поступает в соответствующие сосуды.

Таким образом, открытие и закрытие клапанов сердца связано с изменением величины давления в полостях сердца. Значение же клапанного аппарата состоит в том, что он обеспечивает движение крови в полостях сердца в одном направлении .

Основные физиологические свойства сердечной мышцы.

Возбудимость. Сердечная мышца менее возбудима, чем скелетная. Реакция сердечной мышцы не зависит от силы наносимых раздражений. Сердечная мышца максимально сокращается и на пороговое и на более сильное по величине раздражение.

Проводимость. Возбуждение по волокнам сердечной мышцы распространяется с меньшей скоростью, чем по волокнам скелетной мышцы. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8-1,0 м/с, по волокнам мышц желудочков - 0,8-0,9 м/с, по проводящей системе сердца - 2,0-4,2 м/с.

Сократимость. Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы предсердий, затем - сосочковые мышцы и субэндокардиальный слой мышц желудочков. В дальнейшем сокращение охватывает и внутренний слой желудочков, обеспечивая движение крови из полостей желудочков в аорту и легочный ствол.

К физиологическим особенностям сердечной мышцы относятся удлиненный рефрактерный период и автоматизм

Рефрактерный период. Сердце имеет значительно выраженный и удлиненный рефрактерный период. Он характеризуется резким снижением возбудимости ткани в период ее активности. Благодаря выраженному рефрактерному периоду, который длится дольше, чем период систолы (0,1-0,3с), сердечная мышца не способна к тетаническому (длительному) сокращению и совершает свою работу по типу одиночного мышечного сокращения.

Автоматизм. Вне организма при определенных условиях сердце способно сокращаться и расслабляться, сохраняя правильный ритм. Следовательно, причина сокращений изолированного сердца лежит в нем самом. Способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом, носит название автоматизма.

Проводящая система сердца.

В сердце различают рабочую мускулатуру, представленную поперечнополосатой мышцей, и атипическую, или специальную, ткань, в которой возникает и проводится возбуждение.

У человека атипическая ткань состоит из:

синусно-предсердного узла , располагающегося на задней стенке правого предсердия у места впадения верхней полой вены;

предсердно-желудочкового узла (атриовентрикулярный узел), находящегося в стенке правого предсердия вблизи перегородки между предсердиями и желудочками;

предсердно-желудочкового пучка (пучок Гиса), отходящего от предсердно-желудочкового узла одним стволом. Пучок Гиса, пройдя через перегородку между предсердиями и желудочками, делится на две ножки, идущие к правому и левому желудочкам. Заканчивается пучок Гиса в толще мышц волокнами Пуркинье.

Синусно-предсердный узел является ведущим в деятельности сердца (водитель ритма), в нем возникают импульсы, определяющие частоту и ритм сокращений сердца. В норме предсердно-желудочковый узел и пучок Гиса являются только передатчиками возбуждений из ведущего узла к сердечной мышце. Однако способность к автоматии присуща предсердно-желудочковому узлу и пучку Гиса, только выражается она в меньшей степени и проявляется лишь при патологии. Автоматизм предсердно-желудочкового соединения проявляется лишь в тех случаях, когда к нему не поступают импульсы от синусно-предсердного узла .

Атипическая ткань состоит из малодифференцированных мышечных волокон. К узлам атипической ткани подходят нервные волокна от блуждающих и симпатических нервов.

Сердечный цикл и его фазы.

В деятельности сердца наблюдаются две фазы: систола (сокращение) и диастола (расслабление). Систола предсердий слабее и короче систолы желудочков. В сердце человека она длится 0,1-0,16 с. Систола желудочков - 0,5-0,56 с. Общая пауза (одновременная диастола предсердий и желудочков) сердца длится 0,4 с. В течение этого периода сердце отдыхает. Весь сердечный цикл продолжается 0,8-0,86 с.

Систола предсердий обеспечивает поступление крови в желудочки. Затем предсердия переходят в фазу диастолы, которая продолжается в течение всей систолы желудочков. Во время диастолы предсердия заполняются кровью.

Показатели сердечной деятельности.

Ударный, или систолический, объем сердца - количество крови, выбрасываемое желудочком сердца в соответствующие сосуды при каждом сокращении. У взрослого здорового человека при относительном покое систолический объем каждого желудочка составляет приблизительно 70-80 мл . Таким образом, при сокращении желудочков в артериальную систему поступает 140-160 мл крови.

Минутный объем - количество крови, выбрасываемое желудочком сердца за 1 мин. Минутный объем сердца - это произведение величины ударного объема на частоту сердечных сокращений в 1 мин. В среднем минутный объем составляет 3-5 л/мин . Минутный объем сердца может увеличиваться за счет увеличения ударного объема и частоты сердечных сокращений.

Законы сердечной деятельности.

Закон Старлинга - закон сердечного волокна. Формулируется так: чем больше растянуто мышечное волокно, тем сильнее оно сокращается. Следовательно, сила сердечных сокращений зависит от исходной длины мышечных волокон перед началом их сокращений.

Рефлекс Бейнбриджа (закон сердечного ритма). Это висцеро-висцеральный рефлекс: увеличение частоты и силы сердечных сокращений при повышении давления в устьях полых вен. Проявление этого рефлекса связано с возбуждением механорецепторов, расположенных в правом предсердии в области впадения полых вен. Механорецепторы, представленные чувствительными нервными окончаниями блуждающих нервов, реагируют на повышение давления крови, возвращающейся к сердцу, например, при мышечной работе. Импульсы от механорецепторов по блуждающим нервам идут в продолговатый мозг к центру блуждающих нервов, в результате этого снижается активность центра блуждающих нервов и усиливаются воздействия симпатических нервов на деятельность сердца, что и обусловливает учащение сердечных сокращений.

Основные методы исследования сердечной деятельности. Врач судит о работе сердца по внешним проявлениям его деятельности, к которым относятся: верхушечный толчок, сердечные тоны и электрические явления, возникающие в работающем сердце.

Верхушечный толчок. Во время систолы желудочков верхушка сердца поднимается и надавливает на грудную клетку в области пятого межреберного промежутка. Во время систолы сердце становится очень плотным. Поэтому надавливание верхушки сердца на межреберный промежуток можно видеть (выбухание, выпячивание), особенно у худощавых субъектов. Верхушечный толчок можно прощупать (пальпировать) и тем самым определить его границы и силу. Сердечные тоны. Это звуковые явления, возникающие в работающем сердце. Различают два тона: I - систолический и II - диастолический.

В происхождении систолического тона принимают участие главным образом предсердно-желудочковые клапаны. Во время систолы желудочков эти клапаны закрываются и колебания их створок и прикрепленных к ним сухожильных нитей обусловливают появление I тона. Кроме того, в происхождении I тона принимают участие звуковые явления, которые возникают при сокращении мышц желудочков. По своим звуковым качествам первый тон протяжный и низкий. Диастолический тон возникает в начале диастолы желудочков, когда происходит закрытие полулунных заслонок клапанов аорты и легочного ствола. Колебание створок клапанов при этом является источником звуковых явлений. По звуковой характеристике II тон короткий и высокий. Тоны сердца можно определить в любом участке грудной клетки. Однако имеются места наилучшего их прослушивания: I тон лучше выражен в области верхушечного толчка и у основания мечевидного отростка грудины; II - во втором межреберье слева от грудины и справа от нее. Тоны сердца прослушиваются при помощи стетоскопа, фонендоскопа или непосредственно ухом.

Электрокардиограмма.

В работающем сердце создаются условия для возникновения электрического тока. Во время систолы предсердия становятся электроотрицательными по отношению к желудочкам, находящимся в это время в фазе диастолы. Таким образом, при работе сердца возникает разность потенциалов. Биопотенциалы сердца, записанные с помощью электрокардиографа, носят название электрокардиограммы.

Для регистрации биотоков сердца пользуются стандартными отведениями , для которых выбираются участки на поверхности тела, дающие наибольшую разность потенциалов. Применяют три классических стандартных отведения, при которых электроды укрепляют:I - на внутренней поверхности предплечий обеих рук;II - на правой руке и в области икроножной мышцы левой ноги; III - на левых конечностях. Используют также и грудные отведения.

Нормальная ЭКГ состоит из ряда зубцов и интервалов между ними. При анализе ЭКГ учитывают высоту, ширину, направление, форму зубцов, а также продолжительность зубцов и интервалов между ними, отражает скорость проведения импульсов в сердце. ЭКГ имеет три направленных вверх (положительных) зубца - Р, R,T и два отрицательных зубца, вершины которых обращены вниз, - Q и S.

Зубец Р - характеризует возникновение и распространение возбуждения в предсердиях.

Зубец Q - отражает возбуждение межжелудочковой перегородки

Зубец R - соответствует периоду охвата возбуждением обоих желудочков

Зубец S - характеризует завершение распространения возбуждения в желудочках.

Зубец Т - отражает процесс реполяризации в желудочках. Высота его характеризует состояние обменных процессов, происходящих в сердечной мышце .

Строение и функции сердечно-сосудистой системы

Сердечно-сосудистая система - физиологическая система, включающая сердце, кровеносные сосуды, лимфатические сосуды, лимфатические узлы, лимфу, механизмы регуляции (местные механизмы: периферические нервы и нервные центры, в частности сосудодвигательный центр и центр регуляции деятельности сердца).

Таким образом, сердечно-сосудистая система - это совокупность 2-х подсистем: системы кровообращения и системы лимфообращения. Сердце - основной компонент обеих подсистем.

Кровеносные сосуды образуют 2 круга кровообращения: малый и большой.

Малый круг кровообращения - 1553 г. Сервет - начинается в правом желудочке лёгочным стволом, который несёт венозную кровь. Эта кровь поступает в лёгкие, где происходит регенерация газового состава. Конец малого круга кроообращения - в левом предсердии четырьмя лёгочными венами, по которым в сердце идёт артериальная кровь.

Большой круг кровообращения - 1628 г. Гарвей - начинается в левом желудочке аортой и кончается в правом предсердии венами: v.v.cava superior et interior. Функции сердечно-сосудистой системы: движение крови по сосудом, т. к. кровь и лимфа выполняют свои функции при движении.


Факторы, обеспечивающие движение крови по сосудам


  • Основной фактор, обеспечивающий движение крови по сосудам: работа сердца как насоса.

  • Вспомогательные факторы:

  • замкнутость сердечно-сосудистой системы;

  • разность давления в аорте и полых венах;

  • эластичность сосудистой стенки (превращение пульсирующего выброса крогви из сердца в непрерывный кровоток);

  • клапанный аппарат сердца и сосудов, обеспечивающий однонаправленное движение крови;

  • наличие внутригрудного давления - "присасывающее" действие, обеспечивающее венозный возврат крови к сердцу.

  • Работа мышц - проталкивание крови и рефлекторное увеличение активности сердца и сосудов в результате активации симпатической нервной системы.

  • Активность дыхательной системы: чем чаще и глубже дыхание, тем больше выражено присасывающее действие грудной клетки.

Морфологические особенности сердца. Фазы деятельности сердца

1. Основные морфологические особенности сердца

У человека 4 х камерное сердце, но с физиологической точки зрения 6-ти камерное: дополнительные камеры - ушки предсердий, т. к. они сокращаются на 0,03-0,04 с раньше предсердий. За счёт их сокращений происходит полное наполнение предсердий кровью. Размеры и масса сердца пропорциональные общим размерам тела.

У взрослого объем полости равен 0,5-0,7 л; масса сердца равна 0,4 % от массы тела.

Стенка сердца состоит из 3х слоёв.

Эндокард - тонкий соединительнотканный слой переходящий в tunica intima сосудов. Обеспечивает несмачиваемость стенки сердца, облегчая внутрисосудистую гемодинамику.

Миокард - миокард предсердия отделяется от миокарда желудочков фиброзным кольцом.

Эпикард - состоит из 2-х слоёв - фиброзный (наружный) и сердечный (внутренний). Фиброзный листок окружает сердце снаружи - выполняет защитную функцию и предохраняет сердце от растяжения. Сердечный листок состоит из 2-х частей:

Висцеральный (эпикард);

Париетальный, который срастается с фиброзным листком.

Между висцеральным и париетальным листками есть полость, заполненная жидкостью (уменьшает травмы).

Значение перикарда:

Защита от механических повреждений;

Защита от перерастяжения.

Оптимальный уровень сердечного сокращения достигается при увеличении длинны мышечных волокон не более чем на 30-40 % от исходной величины. Обеспечивает оптимальный уровень работы клеток синсатриального узла. При перерастяжении сердца нарушается процесс генерации нервных импульсов. Опора для крупных сосудов (препятствует спадению полых вен).


Фазы деятельности сердца и работа клапанного аппарата сердца в различных фазах сердечного цикла

Весь сердечный цикл длится 0,8-0,86 с.

Две основные фазы сердечного цикла:

Систола - выброс крови из полостей сердца в результате сокращения;

Диастола - расслабление отдых и питание миокарда, наполнение полостей кровью.

Эти основные фазы подразделяются на:

Систола предсердий - 0,1 с - кровь поступает в желудочки;

Диастола предсердий - 0,7 с;

Систола желудочков - 0,3 с - кровь поступает в аорту и лёгочный ствол;

Диастола желудочков - 0,5 с;

Общая пауза сердца - 0,4 с. Желудочки и предсердия в диастоле. Сердце отдыхает, питается, предсердия наполняются кровью и на 2/3 напонляются желудочки.

Сердечный цикл начинается в систоле предсердия. Систола желудочка начинается одновременное диастолой предсердий.

Цикл работы желудочков (Шово и Морели (1861 г.)) - состоит из систолы и диастолы желудочков.

Систола желудочков: период сокращения и период изгнания.

Период сокращения осуществляется в 2 фазы:

1) асинхронное сокращение (0,04 с) - неравномерное сокращение желудочков. Сокращение мышцы межжелудочковой перегородки и папиллярных мышц. Эта фаза заканчивается полным закрытием атриовентрикулярного клапана.

2) фаза изометрического сокращения - начинается с момента закрытия атриовентрикулярного клапана и протекает при закрытии всех клапанов. Т. к. кровь несжимаема, в эту фазу длина мышечных волокон не изменяется, а увеличивается их напряжение. В результате увеличивается давление в желудочках. В итоге - открытие полулунных клапанов.

Период изгнания (0,25 с) - состоит из 2-х фаз:

1) фаза быстрого изгнания (0,12 с);

2) фаза медленного изгнания (0,13 с);

Основной фактор - разница давлений, которая способствует выбросу крови. В этот период происходит изотоническое сокращение миокарда.

Диастола желудочков.

Состоит из следующих фаз.

Протодиастолический период - интервал времени от окончания систолы до закрытия полулунных клапанов (0,04 с). Кровь за счёт разность давления возвращается в желудочки, но наполняя кармашки полулунных клапанов закрывает их.

Фаза изометрического расслабления (0,25 с) - осуществляется при полностью закрытых клапанах. Длина мышечного волокна постоянна, изменяется их напряжение и давление в желудочках уменьшается. В результате открываются атриовентрикулярные клапаны.

Фаза наполнения - осуществляется в общую паузу сердца. Сначала быстрое наполнение, затем медленное - сердце наполняется на 2/3.

Пресистола - наполнение желудочков кровью за счет системы предсердий (на 1/3 объёма). За счёт изменения давления в различных полостях сердца обеспечивается разность давления по обе стороны клапанов, что обеспечивает работу клапанного аппарата сердца.

Зависимость электрической и нагнетательной функции сердца от физических и химических факторов.

Различные механизмы и физические факторы ПП ПД Скорость проведения Сила сокращения
Повышение частоты сокращения сердца + Лестница
Снижение частоты сокращений сердца
Повышение температуры +
Понижение температуры +
Ацидоз
Гипоксемия
Повышение К + (+)→(−)
Понижение К +
Повышение Са + - +
Понижение Са + -
НА (А) + + (А/Вуз) +
АХ + -(А/Вуз) -

Обозначения: 0 – отсутствие влияния, «+» - усиление,«−» - торможение

(по Р.Шмидту, Г. Тевсу, 1983 г., Физиология человека, т.3)

ОСНОВНЫЕ ПРИНЦИПЫ ГЕМОДИНАМИКИ»

1. Функциональная классификация кровеносных и лимфатических сосудов (структурно-функциональная характеристика сосудистой системы.

2. Основные законы гемодинамики.

3. Кровяное давление, его виды (систолическое, диастолическое, пульсовое, среднее, центральное и периферическое, артериальное и венозное). Факторы, определяющие кровяное давление.

4. Методы измерения кровяного давления в эксперименте и в клинике (прямой, Н.С. Короткова, Рива-Роччи, артериальная осциллография, измерение венозного давления по Вельдману).


Сердечно-сосудистая система состоит из сердца и сосудов – артерий, капилляров, вен. Сосудистая система представляет собой систему трубок, по которым через посредство циркулирующих в них жидкостей (кровь и лимфа), совершается доставка к клеткам и тканям организма необходимых для них питательных веществ, а также происходит удаление продуктов жизнедеятельности клеточных элементов и перенесение этих продуктов к экскреторным органам (почкам).

По характеру циркулирующей жидкости сосудистую систему человека можно разделить на два отдела: 1) кровеносную систему – систему трубок, по которым циркулирует кровь (артерии, вены, отделы микроциркуляторного русла и сердце); 2) лимфатическую систему – систему трубок, по которым движется бесцветная жидкость – лимфа. В артериях кровь течет от сердца на периферию, к органам и тканям, в венах – к сердцу. Движение жидкости в лимфатических сосудах происходит так же, как и в венах – в направлении от тканей – к центру. Однако: 1) растворенные вещества всасываются главным образом кровеносными сосудами, твердые – лимфатическими; 2) всасывание через кровь происходит значительно быстрее. В клинике всю систему сосудов называют сердечно-сосудистой, в которой выделяют сердце и сосуды.



Сосудистая система.

Артерии – кровеносные сосуды, идущие от сердца к органам и несущие к ним кровь (aer – воздух, tereo – содержу; на трупах артерии пусты, отчего в старину их считали воздухоносными путями). Стенка артерий состоит из трёх оболочек. Внутренняя оболочка выстлана со стороны просвета сосуда эндотелием , под которым лежат субэндотелиальный слой и внутренняя эластическая мембрана . Средняя оболочка построена из гладкомышечных волокон, чередующихся с эластическими волокнами. Наружная оболочка содержит соединительнотканные волокна. Эластические элементы артериальной стенки образуют единый эластический каскад, работающий как пружина и обуславливающий эластичность артерий.

По мере удаления от сердца артерии делятся на ветви и становятся всё мельче и мельче, происходит и их функциональная дифференцировка.

Артерии, ближайшие к сердцу – аорта и ее крупные ветви – выполняют функцию проведения крови. В их стенке относительно больше развиты структуры механического характера, т.е. эластические волокна, так как их стенка постоянно противодействует растяжению массой крови, которая выбрасывается сердечным толчком – это артерии эластического типа . В них движение крови обусловлено кинетической энергией сердечного выброса.

Средние и мелкие артерии – артерии мышечного типа , что связано с необходимостью собственного сокращения сосудистой стенки, так как в этих сосудах инерция сосудистого толчка ослабевает и мышечное сокращение их стенки необходимо для дальнейшего продвижения крови.

Последние разветвления артерий становятся тонкими и мелкими – это артериолы. Они отличаются от артерий тем, что стенка артериолы имеет лишь один слой мышечных клеток, поэтому они относятся к резистивным артериям, активно участвующим в регуляции периферического сопротивления и, следовательно, в регуляции артериального давления.

Артериолы продолжаются в капилляры через стадию прекапилляров . От прекапилляров отходят капилляры.

Капилляры – это тончайшие сосуды, в которых происходит обменная функция. В связи с этим их стенка состоит из одного слоя плоских эндотелиальных клеток, проницаемых для растворенных в жидкости веществ и газов. Капилляры широко анастамозируют между собой (капиллярные сети), переходят в посткапилляры (построенные также, как и прекапилляры). Посткапилляр продолжается в венулу.

Венулы сопровождают артериолы, образуют тонкие начальные отрезки венозного русла, составляющие корни вен и переходящие в вены.

Вены – (лат. vena, греч phlebos) несут кровь в противоположном по отношению к артериям направлении, от органов – к сердцу. Стенки имеют общий план строения с артериями, но значительно тоньше и в них меньше эластической и мышечной ткани, благодаря чему пустые вены спадаются, просвет же артерий – нет. Вены, сливаясь друг с другом, образуют крупные венозные стволы – вены, впадающие в сердце. Вены образуют между собой венозные сплетения.

Движение крови по венам осуществляется в результате действия следующих факторов.

1) Присасывающее действие сердца и грудной полости (в ней во время вдоха создается отрицательное давление).

2) Благодаря сокращению скелетной и висцераьной мускулатуры.

3) Сокращение мышечной оболочки вен, которая в венах нижней половины тела, где условия для венозного оттока сложнее, развита сильнее, чем в венах верхней части тела.

4) Обратному оттоку венозной крови препятствуют особые клапаны вен – это складка эндотелия, содержащая слой соединительной ткани. Они обращены свободным краем в сторону сердца и поэтому препятствуют току крови в этом направлении, но удерживают ее от возвращения обратно. Артерии и вены обычно идут вместе, причем мелкие и средние артерии сопровождаются двумя венами, а крупные – одной.

СЕРДЕЧНО-СОСУДИСТАЯ СИСТЕМА человека состоит из двух последовательно соединенных отделов:

1. Большой (системный) круг кровообращения начинается с левого желудочка, выбрасывающего кровь в аорту. От аорты отходят многочисленные артерии, и в результате кровоток распределяется по нескольким параллельным регионарным сосудистым сетям (регионарное, или органное кровообращение): коронарное, мозговое, легочное, почечное, печеночное и т.д. Артерии ветвятся дихотомически , и поэтому по мере уменьшения диаметра отдельных сосудов общее их число возрастает . В результате образуется капиллярная сеть, общая площадь поверхности которой – около 1000 м 2 . При слиянии капилляров образуются венулы (см. выше) и т.д. Такому общему правилу строения венозного русла большого круга кровообращения не подчиняется кровообращение в некоторых органах брюшной полости: кровь, оттекающая от капиллярных сетей брыжеечных и селезеночных сосудов (т.е. от кишечника и селезенки), в печени происходит еще через одну систему капилляров, и лишь затем поступает к сердцу. Это русло называется портальным кровообращением.

2. Малый круг кровообращения начинается с правого желудочка, выбрасывающего кровь в легочной ствол. Затем кровь поступает в сосудистую систему легких, имеющих общую схему строения, что и большой круг кровообращения. Кровь по четырем крупным легочным венам оттекает к левому предсердию, а затем поступает в левый желудочек. В результате оба круга кровообращения замыкаются.

Историческая справка. Открытие замкнутой кровеносной системы принадлежит английскому врачу Уильяму Гарвею (1578-1657). В своем знаменитом труде «О движении сердца и крови у животных», опубликованном в 1628 г., он с безупречной логикой опроверг господствовавшую доктрину своего времени, принадлежащую Галену, который считал, что кровь образуется из пищевых веществ в печени, притекает к сердцу по полой вене и затем по венам поступает к органам и используется ими.

Существует принципиальное функциональное различие между обоими кругами кровообращения. Оно заключается в том, что объем крови, выбрасываемый в большой круг кровообращения, длжен быть распределен по всем органам и тканям; потребности же разных органов в кровоснабжении различны даже для состояния покоя и постоянно изменяются в зависимости от деятельности органов. Все эти изменения контролируются, и кровоснабжение органов большого круга кровообращения имеет сложные механизмы регуляции. Малый круг кровообращения: сосуды легких (через них проходит то же количество крови) предъявляют к работе сердца постоянные требования и выполняют в основном функцию газообмена и теплоотдачи. Поэтому для регуляции легочного кровотока требуется менее сложная система регуляции.


ФУНКЦИОНАЛЬНАЯ ДИФФЕРЕНЦИРОВКА СОСУДИСТОГО РУСЛА И ОСОБЕННОСТИ ГЕМОДИНАМИКИ.

Все сосуды в зависимости от выполняемой ими функции можно подразделить на шесть функциональных групп:

1) амортизирующие сосуды,

2) резистивные сосуды,

3) сосуды-сфинктеры,

4) обменные сосуды,

5) емкостные сосуды,

6) шунтирующие сосуды.

Амортизирующие сосуды: артерии эластического типа с относительно большим содержанием эластических волокон. Это – аорта, легочная артерия, прилегающие к ним участки артерий. Выраженные эластические свойства таких сосудов обуславливают амортизирующий эффект «компрессионной камеры». Этот эффект заключается в амортизации (сглаживании) периодических систолических волн кровотока.

Резистивные сосуды. К сосудам этого типа относятся концевые артерии, артериолы, в меньшей степени – капилляры и венулы. Артерии концевые и артериолы – это прекапиллярные сосуды, обладающие относительно малым просветом и толстыми стенками, с развитой гладкомышечной мускулатурой, оказывают наибольшее сопротивление кровотоку: изменение степени сокращения мышечных стенок этих сосудов сопровождается отчетливыми изменениями их диаметра и, следовательно, общей площади поперечного сечения. Это обстоятельство является основным в механизме регуляции объемной скорости кровотока в различных областях сосудистого русла, а также перераспределения сердечного выброса по разным органам. Описанные сосуды являются прекапиллярными сосудами сопротивления. Посткапиллярные сосуды сопротивления – это венулы и, в меньшей степени – вены. Соотношение между прекапиллярным и посткапиллярным сопротивлением влияет на величину гидростатического давления в капиллярах – и, следовательно, на скорость фильтрации.

Сосуды-сфинктеры – это последние отделы прекапиллярных артериол. От сужения и расширения сфинктеров зависит число функционирующих капилляров, т.е. площадь обменных поверхностей.

Обменные сосуды – капилляры. В них происходит диффузия и фильтрация. Капилляры не способны к сокращениям: их просвет изменяется пассивно вслед за колебаниями давления в пре- и посткапиллярах (резистивных сосудов).

Емкостные сосуды – это главным образом вены. Благодаря своей высокой растяжимости вены способны вмещать или выбрасывать большие объемы крови без существенных изменение каких-либо параметров кровотока. В связи с этим они могут играть роль как депо крови . В замкнутой сосудистой системе изменения емкости какого-либо отдела обязательно сопровождается перераспределением объема крови. Поэтому изменение емкости вен, наступающие при сокращении гладких мышц, влияют на распределение крови во всей кровеносной системе и тем самым – прямо или косвенно – на общие параметры кровообращения . Кроме того, некоторые вены (поверхностные) при низком внутрисосудистом давлении уплощены (т.е. имеют овальный просвет), и поэтому они могут вмещать некоторый дополнительный объем, не растягиваясь, а лишь приобретая цилиндрическую форму. Это главный фактор, обуславливающий высокую эффективную растяжимость вен. Основные депо крови : 1) вены печени, 2) крупные вены чревной области, 3) вены подсосочкового сплетения кожи (общий объем этих вен может увеличиваться на 1 л по сравнению с минимальным), 4) легочные вены, соединенные с системным кровообращением параллельно, обеспечивающие кратковременное депонирование или выброс достаточно больших количеств крови.

У человека , в отличие от других видов животных, нет истинного депо , в котором кровь могла бы задержаться в специальных образованиях и по мере необходимости выбрасываться (как, например, у собаки, селезенка).

ФИЗИЧЕСКИЕ ОСНОВЫ ГЕМОДИНАМИКИ.

Основными показателями гидродинамики являются:

1. Объемная скорость движения жидкости – Q.

2. Давление в сосудистой системе – Р.

3. Гидродинамическое сопротивление – R.

Соотношение между этими величинами описывается уравнением:

Т.е. количество жидкости Q, протекающее через любую трубу, прямо пропорционально разности давлений в начале (Р 1) и в конце (Р 2) трубы и обратно пропорционально сопротивлению (R) току жидкости.

ОСНОВНЫЕ ЗАКОНЫ ГЕМОДИНАМИКИ

Наука, изучающая движение крови в сосудах, получила название гемодинамики. Она является частью гидродинамики, изучающей движение жидкостей.

Периферическое сопротивление R сосудистой системы передвижению крови в ней слагается из множества факторов каждого сосуда. Отсюда уместна формула Пуазеля:

где l – длина сосуда, η – вязкость протекающей в ней жидкости, r – радиус сосуда.

Однако сосудистая система состоит из множества сосудов, соединенных и последовательно, и параллельно, отсюда суммарное сопротивление можно вычислить с учетом этих факторов:

При параллельном ветвлении сосудов (капиллярное русло)

При последовательном соединении сосудов (артериальном и венозном)

Поэтому R суммарное всегда меньше в капиллярном русле, чем в артериальном или венозном. С другой стороны, вязкость крови тоже величина непостоянная. Например, если кровь протекает через сосуды, диаметром менее 1 мм, вязкость крови уменьшается. Чем меньше диаметр сосуда, тем меньше вязкость протекающей крови. Это связано с тем, что в крови наряду с эритроцитами и другими форменными элементами есть плазма. Пристеночный слой представляет собой плазму, вязкость которой намного меньше вязкости цельной крови. Чем тоньше сосуд, тем большую часть его поперечного сечения занимает слой с минимальной вязкостью, что уменьшает общую величину вязкости крови. Кроме этого, в норме открыта только часть капиллярного русла, остальные капилляры являются резервными и открываются по мере усиления обмена веществ в тканях.


Распределение периферического сопротивления.

Сопротивление в аорте, больших артериях и относительно длинных артериальных ответвлениях составляет лишь около 19% от общего сосудистого сопротивления. На долю же конечных артерий и артериол приходится почти 50 % этого сопротивления. Таким образом, почти половина периферического сопротивления приходится на сосуды, длиной порядка всего насколько миллиметров. Это колоссальное сопротивление связано с тем, что диаметр концевых артерий и артериол относительно мал, и это уменьшение просвета полностью не компенсируется ростом числа параллельных сосудов. Сопротивление в капиллярном русле – 25 %, в венозном русле и в венулах – 4 % и во всех остальных венозных сосудах – 2 %.

Итак, артериолы играют двоякую роль: во-первых, участвуют в поддержании периферического сопротивления и через него в формировании необходимого системного артериального давления; во-вторых, за счет изменения сопротивления обеспечивают перераспределение крови в организме – в работающем органе сопротивление артериол снижается, приток крови к органу увеличивается, но величина общего периферического давления остается постоянной за счет сужения артериол других сосудистых областей. Это обеспечивает стабильный уровень системного артериального давления.

Линейная скорость кровотока выражается в см/с. Её можно рассчитать, зная количество крови, изгнанное сердцем в минуту (объемная скорость кровотока) и прощадь сечения кровеносного сосуда.

Линейная скорость V отражает скорость продвижения частиц крови вдоль сосуда и равна объемной скорости, деленной на суммарную площадь сечения сосудистого русла:

Линейная скорость, вычисленная по этой формуле, есть средняя скорость. В действительности же линейная скорость величина непостоянная, так как отражает движение частиц крови в центре потока вдоль сосудистой оси и у сосудистой стенки (ламинарное движение – слоистое: в центре движутся частицы – форменные элементы крови, а у стенки – слой плазмы). В центре сосуда скорость максимальная, а около стенки сосуда она минимальна в связи с тем, что здесь особенно велико трение частиц крови о стенку.

Изменение линейной скорости тока крови в разных частях сосудистой системы.

Самое узкое место в сосудистой системе – аорта. Её диаметр составляет 4 см 2 (имеется в виду суммарный просвет сосудов), здесь самое минимальное периферическое сопротивление и самая большая линейная скорость – 50 см/с .

По мере расширения русла скорость снижается. В артериолах самое «неблагополучное» отношение длины и диаметра, поэтому здесь самое большое сопротивление и наибольшее падение скорости. Но за счет этого при входе в капиллярное русло кровь имеет наименьшую скорость, необходимую для обменных процессов (0,3-0,5 мм/с) . Этому способствует и фактор расширения (максимального) сосудистого русла на уровне капилляров (общая площадь их сечения – 3200 см 2). Суммарный просвет сосудистого русла является определяющим фактором в формировании скорости системного кровообращения .

Кровь оттекающая от органов, поступает через венулы в вены. Происходит укрупнение сосудов, параллельно суммарный просвет сосудов уменьшается. Поэтому линейная скорость кровотока в венах опять увеличивается (по сравнению с капиллярами). Линейная скорость – 10-15 см/с, а площадь поперечного сечения этой части сосудистого русла – 6-8 см 2 . В полых венах скорость кровотока – 20 см/с.

Таким образом , в аорте создается наибольшая линейная скорость движения артериальной крови к тканям, где при минимальной линейной скорости в микроциркуляторном русле происходят все обменные процессы, после чего по венам с увеличивающейся линейной скоростью уже венозная кровь поступает через «правое сердце» в малый круг кровообращения, где происходят процессы газообмена и оксигенации крови.

Механизм изменения линейной скорости кровотока.

Объем крови, протекающий в 1 мин через аорту и полые вены и через легочную артерию или легочные вены, одинаков. Отток крови от сердца соответствует ее притоку. Из этого следует, что объем крови, протекающий в 1 мин через всю артериальную систему или все артериолы, через все капилляры или всю венозную систему как большого, так и малого круга кровообращения, одинаков. При постоянном объеме крови, протекающей через любое общее сечение сосудистой системы, линейная скорость кровотока не может быть постоянной. Она зависит от общей ширины данного отдела сосудистого русла. Это следует из уравнения, выражающего соотношение линейной и объемной скорости: ЧЕМ БОЛЬШЕ ОБЩАЯ ПЛОЩАДЬ СЕЧЕНИЯ СОСУДОВ, ТЕМ МЕНЬШЕ ЛИНЕЙНАЯ СКОРОСТЬ КРОВОТОКА . В кровеносной системе самым узким местом является аорта. При разветвлении артерий, несмотря на то, что каждая ветвь сосуда ´уже той, от которой она произошла, наблюдается увеличение суммарного русла, так как сумма просветов артериальных ветвей больше просвета разветвившейся артерии. Наибольшее расширение русла отмечается в капиллярах большого круга кровообращения: сумма просветов всех капилляров примерно в 500-600 раз больше просвета аорты. Соответственно этому кровь в капиллярах движется в 500-600 раз медленнее, чем в аорте.

В венах линейная скорость кровотока снова возрастает, так как при слиянии вен друг с другом суммарный просвет кровяного русла суживается. В полых венах линейная скорость кровотока достигает половины скорости в аорте.

Влияние работы сердца на характер кровотока и его скорость.

В связи с тем, что кровь выбрасывается сердцем отдельными порциями

1. Кровоток в артериях имеет пульсирующий характер . Поэтому, линейная и объемная скорости непрерывно меняются: они максимальны в аорте и легочной артерии в момент систолы желудочков и уменьшаются во время диастолы.

2. В капиллярах и венах кровоток постоянен , т.е. линейная скорость его постоянна. В превращении пульсирующего кровотока в постоянный имеют значение свойства артериальной стенки: в сердечно-сосудистой системе часть кинетической энергии, развиваемой сердцем во время систолы, затрачивается на растяжение аорты и отходящих от нее крупных артерий. В результате в этих сосудах образуется эластическая, или компрессионная камера, в которую поступает значительный объем крови, растягивающий ее. При этом кинетическая энергия, развитая сердцем, переходит в энергию эластического напряжения артериальных стенок. Когда систола заканчивается, растянутые стенки артерий стремятся спадаться и проталкивают кровь в капилляры, поддерживая кровоток во время диастолы.

Методика исследования линейной и объемной скорости кротока.

1. Ультразвуковой метод исследования – к артерии на небольшом расстоянии друг от друга прикладывают две пьезоэлектрические пластинки, которые способны преобразовывать механические колебания в электрические и обратно. Оно преобразуется в ультразвуковые колебания, которые передаются с кровью на вторую пластинку, воспринимаются ею и преобразуются в высокочастотные колебания. Определив, как быстро распространяются ультразвуковые колебания по току крови от первой пластинки ко второй и против тока крови в обратном направлении, рассчитывают скорость кровотока: чем быстрее ток крови, тем быстрее будут распространяться ультразвуковые колебания в одном направлении и медленнее – в противоположном.

Окклюзионная плетизмография (окклюзия – закупорка, зажатие) – метод, позволяющий определить объемную скорость регионарного кровотока. Метока состоит в регистрации изменений объема органа или части тела, зависящих от их кровенаполнения, т.е. от разности между притоком крови по артериям и оттоком ее по венам. Во время плетизмографии конечность или ее часть помещают в герметически закрывающийся сосуд, соединенный с манометром для измерения малых колебаний давления. При изменении кровенаполнения конечности изменяется ее объем, что вызывает увеличение или уменьшение давления воздуха или воды в сосуде, в который помещают конечность: давление регистрируется манометром и записывается в виде кривой – плетизмограммы. Для определения объемной скорости кровотока в конечности на несколько секунд сжимают вены и прерывают венозный отток. Поскольку приток крови по артериям продолжается, а венозного оттока нет, увеличение объема конечности соответствует количеству притекающей крови.

Величина кровотока в органах на 100 г массы