Другие записи. Сканирующий зондовые микроскоп

МЕТОДИЧЕСКАЯ РАЗРАБОТКА № 1

ТЕМА : Организация, режим работы микробиологической лаборатории. Методы микробиологического исследования. Микроскопический метод диагностики. Микроскопы, их назначение, работа с иммерсией. Морфология бактерий

МОТИВАЦИОННАЯ ХАРАКТЕРИСТИКА: выпускники любого факультета медицинского вуза в ряде случаев (возникновение эпидемий в отдалённых районах при отсутствии профильных лабораторий, необходимости срочной предварительной диагностики особо опасных инфекций, которая позволяет своевременно ввести карантин и требовать развёртывания специальной лаборатории и т.д.) должны:

Уметь организовать рабочее место микробиолога;

Выбрать наиболее целесообразное направление исследований для обнаружения идентификации возбудителей инфекционных заболеваний;

Иметь навыки безошибочного выполнения ряда микробиологических и противоэпидемических мероприятий;

Представлять взаимосвязь производимых микробиологических манипуляций с прочими методами обследования больного, отчётливо понимать, что, без прямого обнаружения возбудителя или без выявления ряда доказательных косвенных признаков пребывания последнего в организме, нельзя поставить диагноз инфекционного заболевания, нельзя отличить его от неспецифических (безмикробных) патологических процессов.

Вот почему умение и навыки, приобретённые уже на первом занятии, необходимы для дальнейшего усвоения курса микробиологии, для выполнения в будущем профессиональной работы врача-эпидемиолога, инфекциониста, участкового терапевта и других. Более того, они - основа общей профессиональной грамотности врача любого профиля.

УЧЕБНАЯ ЦЕЛЬ:

Общая: дать представление

О структуре микробиологических лабораторий общего и специального профиля;

Об основных объектах, направлениях и методах исследования, которые можно осуществлять в любой лаборатории и тех особенностях, которые крайне важны для лаборатории специального назначения;

Об оборудовании, необходимом для реализации исследований;

О реактивном и диагностическом обеспечении общего и специального профиля;

О режиме работы в лаборатории.

Конкретная:

Обучить приготовлению и микроскопическому анализу микропрепарата с помощью иммерсионного объектива и светового микроскопа;

Систематизировать знания обо всех видах микроскопов и их диагностических возможностях;

Освоить технику микроскопического метода.

ВОПРОСЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ ПОДГОТОВКИ И ВВОДНОГО

КОНТРОЛЯ ЗНАНИЙ:

1. Микробиологическая лаборатория общего и специального назначения:

Специализация лаборатории;

Цели, задачи лабораторий;

Оснащение лаборатории и рабочего места;

Режим работы в лаборатории;

Методы микробиологического лабораторного исследования.

2. Микроскопический метод исследования:

Цели, задачи, диагностические возможности;

Виды микроскопов, их назначение, разрешающая способность;

Ход лучей в световом и тёмнопольном микроскопах с иммерсионной системой и без неё;

Микрометрические приспособления и их назначение.

3. Морфология микроорганизмов:

Понятие, основные морфологические группы бактерий;

Методы изучения морфологии микроорганизмов.

4. Микроскопический анализ препаратов:

Способы подготовительной обработки предметных стёкол;

Приготовление мазков из агаровых и бульонных культур микроорганизмов, жидкого

(кровь) и вязкого (мокрота) материала;

Фиксация (назначение, методы);

Простая окраска;

Определение размеров бактерий.

5. Люминесцентный метод исследования:

Цели, задачи, возможности;

Оснащение метода.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ПРАКТИЧЕСКОЙ РАБОТЫ С ПОЛНЫМ РЕГЛАМЕНТОМ ПРОТОКОЛА ЗАНЯТИЯ И ЕГО ОФОРМЛЕНИЕМ

Наименование учебного элемента

(задания)

Методическое

Регламент протокола

Организация и режим работы бактериологической лаборатории

Приложение 1

Записать в протокол,

зарисовать схему

Микроскопы: виды, устройство, принцип работы, возможности.

Дополнительные устройства к световому микроскопу

Приложение 2, 3

Зарисовать таблицу при самоподготовке

Морфология микроорганизмов.

Размеры микроорганизмов, способы их измерения

Атлас по медицинской микробиологии, вирусологии и иммунологии. Под ред. Воробьева А.А., Быкова А.С.- М., 2003. С.23-26

Зарисовать основные группы бактерий

Микроскопический метод.

Подготовка обезжиренных стёкол для приготовления препарата из материала исследования.

Фиксация препарата.

Окраска его простым способом

Приложение 4-7

Записать этапы исследования. На занятии приготовить микропрепараты, их микроскопировать, зарисовать, изучить демонстрационные препараты

Микроскопия препарата с иммерсией

Приложение 8

Записать при самоподготовке

Правила работы с иммерсионным объективом. Ход лучей в иммерсионном объективе

Приложение 8. Табличный фонд учебной комнаты

Зарисовать на практическом занятии.

Приложение 1

РЕЖИМ РАБОТЫ В БАКТЕРИОЛОГИЧЕСКОЙ ЛАБОРАТОРИИ

/Извлечение из санитарных правил СП 1.2.731-99 «Безопасность работы с микроорганизмами 111-IУ групп патогенности и гельминтами» Минздрав России. М., 1999/

Работники бактериологической лаборатории должны постоянно помнить при работе с заразным материалом о возможности заразиться и перенести инфект за пределы лаборатории. Поэтому они должны быть особенно внимательны, опрятны и педантичны в работе.

В бактериологических лабораториях нужно соблюдать следующие правила и режим работы:

1. Находиться в помещении бактериологической лаборатории, а тем более работать обязательно в халате, шапочке (косынке), в отдельных случаях в маске и резиновых перчатках.

2. Без надобности переходить из одного помещения лаборатории в другое нельзя. При выходе из лаборатории халат и другую спецодежду следует снимать. Руки обязательно вымыть с мылом.

3. Особо опасные работы проводить в специальных боксах, облучаемых после их проведения бактерицидными лампами.

4. Для работы пользоваться только отведённым местом и оборудованием. Перекладывать заразный материал или предметы, соприкасающиеся с ним, на другое рабочее место (стул, подоконник и т.д.) запрещается.

5. Все лишние предметы не следует держать на рабочем месте. Сумки, тетради, книги должны быть спрятаны в стол или целлофановые мешки.

7. После завершения работы в лаборатории рабочее место и руки дезинфицируются и моются с мылом.

МЕРОПРИЯТИЯ В СЛУЧАЕ АВАРИИ:

При аварии во время работы с инфекционным материалом (бой посуды, разбрызгивание из пипетки и т.д.) необходимо тщательно обеззараживать оборудование и инфицированные предметы. Для этого осуществляются следующие мероприятия:

а) применяют З - 5 % раствор хлорамина или фенола, который заливают в те места, куда попадает заражённый материал, а боковые поверхности мебели инвентаря, приборов, аппаратов и стены обмывают тампоном, смоченным тем же дез. раствором. Обработанные объекты оставляют на 30-40 минут, после чего производят обычную влажную уборку;

б) заразную одежду снимать и замачивать в 1 % растворе хлорамина; обувь обмывать тампоном, обильно пропитанным дез. раствором;

в) открытые участки кожи лица, рук и др. обрабатывать дез. раствором и 70 % этиловым спиртом. При загрязнении слизистых оболочек: рот полоскать либо 3 % раствором соды, либо 0,5 % раствором соляной кислоты или раствором марганцево-кислого калия 1:10000. Глаза промывают раствором борной кислоты и струёй воды, рот прополаскивают 0,05 % раствором марганцево-кислого калия или 0,1 % раствором борной кислоты.

Приложение 2

Основные виды микроскопов

Микроскопили

оптическое

устройство

Особенность и сущность

Разрешающая

способность

Назначение

Световой микроскоп (МБИ - 1,2,3,6,11)

Все объекты рассматриваются в проходящем свете сухим и иммерсионным объективом

Разрешающая способность - 0,4-0,2 мкм. Увеличение при данной длине тубуса равно произведению увеличений объектива и окуляра. Минимальное - 6ЗО (для иммерсионного объектива) и максимальное -1350

Используется для изучения морфологии, структуры, подвижности и тинкториальных свойств микроорганизмов

Люминесцентный микроскоп

Использование ультрафиолетовых лучей и люминесцирующих красителей, способных светиться(флюоресцировать) под УФ - лучами. Позволяет наблюдать микроорганизмы в излучаемом ими свете и цвете

Разрешающая способность - 0.1 мкм. Повышение её связано с использованием коротковолновых ультрафиолетовых лучей. Максимальное увеличение - в 3000 раз. Преимущество- цветное изображение, высокая контрастность, возможность исследовать живые объекты.

Используется не только для изучения морфологии, и тинкториальных свойств, но и для исследования процессов жизнедеятельности микробной клетки.

Электронный микроскоп

Принципдействия и устройства подобен таковым у обычного светового микроскопа. Различия - вместо источника света – источник электроволн(вольфрамоваяпроволока,нагреваемая

электротоком,

вместооптических линз-электромагнитные).

Разрешающая - способность 0.001 мкм. Первое промежуточное увеличение в 130 раз, от проекционной линзы - в 20 - 200 раз, в целом - 2500-25 000, максимум –

в 100 000 раз.

Широко используется для изучения вирусов, мельчайших микроорганизмов. В бактериологии используется для изучения деталей тонкого строения.

Инвертированные

микроскопы (тёмнопольный, фазово-контрастный)

Исследования проводят в проходящем свете в светлом или тёмном поле с применением метода фазового контраста. МБИ - 12,13 снабжены собственными столиками-термостатами, кинокамерами. Линзы окуляра и

Объектива дают обратное увеличенное изображение.

Позволяет проводить широкий круг микроскопических исследований, визуальное наблюдение, фотографирование, применение светлого и тёмного полей в прямом и отражённом свете, прямое и косое освещение, микроскопирование в поляризованном свете, методом фазовых контрастов, в свете люминесценции.

Стереомикроскоп

Даёт подсвет в прямом и косопроходящем свете

Наиболее пригоден для крупных объектов (грибов)

Изучение колоний, микологических культур.

Приложение 3

Среди дошкольников отыскать тех, кого не интересует устройство всего живого на Земле, очень не просто. Ежедневно дети задают десятки сложнейших вопросов своим мамам и папам. Любознательных малышей интересует определенно все: из чего состоят животные и растения, чем жжется крапива, почему одни листочки гладкие, а другие – пушистые, как стрекочет кузнечик, отчего помидор красный, а огурец – зеленый. И именно микроскоп даст возможность найти ответы на многие детские «почему «. Куда интереснее не просто послушать мамин рассказ о каких-то там клетках, а посмотреть на эти клетки собственными глазами. Трудно даже представить, насколько захватывающие картинки можно увидеть в окуляр микроскопа , какие удивительные открытия сделает ваш маленький естествоиспытатель.

Занятия с микроскопом помогут малышу расширить знания об окружающем мире, создадут необходимые условия для познавательной деятельности, экспериментирования, систематического наблюдения за всевозможными живыми и не живыми объектами. У малыша будет развиваться любознательность, интерес к происходящим вокруг него явлениям. Он будет ставить вопросы и самостоятельно искать на них ответы. Маленький исследователь сможет совсем иначе взглянуть на самые простые вещи, увидеть их красоту и уникальность. Все это станет крепкой основой для дальнейшего развития и обучения.

Нужно отметить, что очень важна заинтересованность кого-нибудь из взрослых: мамы, папы, старших брата или сестры. Тогда они смогут передать свою увлеченность малышу. Сам кроха, если, конечно, он не прирожденный биолог, вряд ли будет долго возиться с микроскопом без вашей активной помощи и участия.

Какие бывают микроскопы

Детский микроскоп ничем принципиально не отличается от микроскопа биологического. Это не макет и не игрушка, а действующий оптический прибор. И, часто, такие микроскопы имеют очень приличную оптику и большое увеличение. Давайте рассмотрим типы микроскопов и попробуем определить их основные плюсы и минусы.

Итак, чаще всего в магазине вы встретите так называемый прямой биологический микроскоп (монокулярный, т.е. имеющий один окуляр). С похожим прибором сталкивался любой из нас на уроках школьной биологии. Это классический вариант микроскопа, только оформлен он необычно и весело, чтобы понравиться своему маленькому хозяину (может быть раскрашен в яркие цвета или иметь не совсем обычную форму ). С его помощью можно рассматривать как прозрачные объекты (на предметных стеклах в проходящем свете), так и непрозрачные (в отраженном свете). Важная характеристика любого микроскопа – его увеличение. Обычно микроскопы имеют три сменных объектива. Но увеличивает не только объектив. Окуляр тоже имеет свое собственное увеличение (как правило, 10 или 20 крат). Для того, чтобы посчитать общее увеличение микроскопа, нужно увеличение окуляра (всегда написано на окуляре) умножить на увеличение объектива. Так, если микроскоп имеет окуляр с 20-тикратным увеличением и объективы 4, 10 и 40, при смене объективов получаем увеличения 80, 200 и 800 крат.

Современные световые микроскопы могут создавать увеличение в 1500–3000 крат. Стоит ли покупать прибор с таким увеличением в качестве первого микроскопа ребенку дошкольнику? Вероятно, не стоит. Даже для очень серьезных экспериментов малышу вряд ли понадобится увеличение больше 400–600 крат. Микробов, правда, рассмотреть не удастся. Но, если кто-нибудь из родителей не имеет специального образования, вы, скорее всего, не увидите их и в «крутой» микроскоп. Для приготовления микробного препарата нужно использовать специальные методы окраски мазка, очень мощное освещение и иммерсионные объективы (объектив с большим увеличением погружается в специальное иммерсионное масло, обычно кедровое, для устранения рассеивания света). Но расстраиваться нет причин. И без микробов маленькому биологу с головой хватит объектов для изучения.

Очень хорошим выбором для малыша станет стереомикроскоп (бинокулярный ). Он имеет два расположенных под углом друг к другу окуляра, что создает стереоизображение. И хотя такие микроскопы дают относительно небольшие увеличения (до 100), зато позволяют рассматривать практически любые предметы, которые нас окружают. Это поможет малышу увидеть многие обыденные вещи совсем в ином свете. Для такого микроскопа не нужно мощное освещение. И, кроме всего прочего, бинокулярный микроскоп равномерно нагружает оба глаза, что больше подходит для неокрепшего детского зрения, чем монокуляры. Многие современные микроскопы имеют собственную встроенную подсветку. Обратите на это внимание при выборе прибора. Дополнительный источник света позволяет лучше осветить объект, а, значит, и лучше его рассмотреть.

Есть совсем маленькие, «карманные » микроскопы с небольшим увеличением. Их можно носить с собой на прогулку и рассматривать растения и насекомых прямо на лугу или в лесу.

Если у вас дома есть компьютер, можно обзавестись цифровым микроскопом. Эта дорогая современная игрушка тоже имеет свои достоинства и недостатки. Главное достоинство – возможность вывода изображения на экран монитора. Это превращает микроскоп в подобие увлекательной компьютерной игры. Ребенок может сохранить полученное изображение, отредактировать, раскрасить, подписать при помощи простого графического редактора. А еще можно записывать видеоизображение и даже сделать свой собственный видеофильм о микромире. Микроскоп снимается с подставки, с ним можно пройтись по комнате, поднося к любым предметам и получая на экране их увеличенное изображение. В каком-то смысле такой микроскоп превращается из исследовательского прибора в творческий инструмент. Хорошо ли это? И да, и нет. Если ваш малыш – натура творческая, цифровой микроскоп наверняка придется ему по душе. Если же кроха скорее естествоиспытатель, стремящийся постигнуть тайны мироздания, лучше приобрести для него обычный микроскоп. Вся захватывающая суть микроскопа именно в том, что смотришь в окуляр. Словно заглядываешь одним глазком в неведомый и удивительный мир, другую вселенную…

Оборудуем лабораторию

Для того чтобы занятия с микроскопом не наскучили малышу, организуйте их, как увлекательную игру, добавив известную долю таинственности. Пусть ребенок представит себя настоящим ученым-исследователем. А для этого ему понадобится мини-лаборатория. Выделите малышу полку, где будет стоять микроскоп, храниться образцы и необходимые инструменты для детских исследований. Обычный письменный стол может в считанные минуты превратиться в рабочий уголок. Только непременно позаботьтесь о хорошем освещении. Это снизит неизбежную нагрузку на детские глаза: чем лучше освещен объект, тем легче его разглядеть. Так что лучшее место для микроскопа – возле окна. Да еще прибавьте к этому яркую настольную лампу. Сразу приучайте малыша поддерживать порядок на рабочем месте (в лаборатории всегда должен быть порядок! ), а после занятий все за собой убирать. Дайте ребенку всевозможные баночки и коробочки, в которых он сможет хранить свои объекты для исследования и необходимый инвентарь.

Кроме самого микроскопа , вам понадобятся предметные и покровные стекла, пипетки, пинцет, игла. А также некоторые вещества: дистиллированная вода, спирт, водный раствор йода (для окраски). Объясните малышу правила безопасности и строго требуйте их соблюдения. Все-таки микроскоп (даже детский) – не игрушка, а сложный оптический прибор. И колоть орехи им не стоит. Также не обязательно бездумно крутить все подряд винты. Делать это нужно осознанно и с определенной целью. Сразу расскажите малышу, что и для чего в микроскопе предназначено и научите кроху все называть своими именами, а не «штучками» и «колесиками». Замечено, что даже пятилетние малыши быстро осваиваются с микроскопом: подбирают нужное увеличение и наводят резкость, рассматривая все, что попадается под руку.

Первое время не оставляйте малыша с микроскопом один на один. Рассматривать предметы в отраженном свете при небольшом увеличении ваш маленький микроскопист научится быстро. А вот работы с предметными стеклами лучше ему самому пока не доверять, а делать это вместе. Во-первых, приготовление препарата подразумевает манипулирование острыми предметами (лезвие, игла) и химическими веществами. Во-вторых, предметные стекла – вещь крайне хрупкая. Неумелые пальчики могут их легко раздавить и пораниться. Научите малыша пользоваться пинцетом: отделять кусочки исследуемых объектов, класть их на предметный столик. Это будет развивать аккуратность и точность движений маленького исследователя.

Научная экспедиция

Раз уж малыш превратился в ученого-естествоиспытателя, значит, самое время отправиться в научную экспедицию за всевозможными образцами. Для такой необычной прогулки следует запастись несколькими баночками с крышками и коробочками, куда вы будете складывать свои находки. Очень удобна для этих целей коробка от конфет с пластиковыми ячейками или пластиковый лоток для яиц. Еще вам пригодятся маркер, чтобы подписать коробочки с образцами, пинцет и перочинный нож.

Каждый раз можно организовывать «экспедиции» в разные места. Сегодня поищите образцы во дворе, завтра отправьтесь на луг, послезавтра – к водоему. Дайте малышу возможность самому решить, что он хочет забрать домой для изучения. И, конечно, подскажите ему несколько своих идей.

Что же можно собирать? Абсолютно все! Листья, цветочки, лепестки, колючки растений, семена деревьев и цветов. Всевозможные почвы: чернозем, песок, глина. Очень интересно рассмотреть с малышом состав чернозема (хорошо видны остатки растений и даже живые насекомые ), песчинки (красивые круглые кристаллики) и вязкую глину. Сразу станет понятно, где лучше расти растениям и почему. Соберите несколько видов лишайников. Они изумительно красивы под микроскопом. Интересно рассматривать мох. Часто в нем можно отыскать крошечных насекомых, которые практически не видны невооруженным глазом. Отломите по кусочку коры разных деревьев. Пригодятся перышки птиц. Зачерпните понемногу воды из лужи и заросшего водоема, прихватите немного водорослей и тины. Всю эту добычу рассортируйте и подпишите. Теперь вашему маленькому биологу хватит работы надолго.

Настраиваем микроскоп

В первую очередь необходимо настроить освещение. Для этого поверните зеркальце под предметным столиком таким образом, чтобы свет настольной лампы отражался от него и проходил через отверстие диафрагмы. Наблюдая в окуляр, поворачивайте зеркало до тех пор, пока все поле зрения (т.е. то, что вы видите в окуляр) не будет равномерно освещено. Теперь положите на предметный столик ваш препарат и зафиксируйте его специальными держателями. Установите объектив с самым маленьким увеличением. Глядя в окуляр, при помощи винтов настройки медленно поднимайте или опускайте тубус микроскопа до тех пор, пока в поле зрения не появится изображение препарата. Во время фокусировки можно осторожно подвигать препарат. Так вам будет легче правильно его расположить. Найдя изображение, вращайте винты еще медленнее, чтобы исследуемый объект стал максимально резким. После этого при необходимости установите большее увеличение. Все, можно рассматривать!

Если к микроскопу прилагается встроенный осветитель, то зеркало вам не понадобится. Также нет необходимости его настраивать, если вы собираетесь рассматривать предметы в отраженном свете. В этом случае просто положите объект на предметный столик, который должен быть максимально освещен, и настройте фокус.

Как приготовить препарат

Для того чтобы рассмотреть какой-нибудь объект в проходящем свете, он должен быть очень тонким и прозрачным (иначе лучи света не смогут сквозь него пройти). Покровные стекла тщательно вымойте, сполосните в спирте (чтобы на них не оставалось пятен) и высушите. Если вы собираетесь исследовать какую-нибудь жидкость (например, молоко, сок или воду), просто капните пару капель на предметное стекло и сверху накройте покровным стеклом. Если объект исследования – кусочек растения, то при помощи острого лезвия срежьте с него тонкую, прозрачную пленочку, возьмите ее пинцетом и положите в центр покровного стекла.

Сверху капните одну каплю воды. Капать воду сможет и малыш, а вот работать с лезвием, понятно, придется вам. Если ваш объект прозрачный, его нужно окрасить, добавив одну каплю водного раствора метиленового синего (в народе известен как «синька» ). Теперь накрываем все это покровным стеклом, следя, чтобы под ним не осталось пузырьков воздуха, промакиваем лишнюю жидкость и изучаем под микроскопом .

Такой препарат называется временным. После его изучения стекла моются и используются для последующих опытов. Если же вам хочется сохранить препарат надолго, перед тем как положить покровное стекло, тонкой иглой нанесите по его краю прозрачный клей, аккуратно придавите (стекла очень хрупкие и легко трескаются!) и оставьте сохнуть на сутки. Теперь это уже постоянный препарат, который можно рассматривать много раз. Кстати, к большинству микроскопов прилагаются уже готовые микропрепараты и слайды для рассматривания. Такие наборы можно купить и отдельно.

Что можно посмотреть под микроскопом?

Для рассматривания под микроскопом годится буквально все. Начните с небольшого увеличения. Рассмотрите вместе с малышом листочки собранных растений. Многие из них имеют волоски, которые очень интересно рассматривать в микроскоп. Хорошо видно строение листа, жилки. Посмотрите на лист мать-и-мачехи с одной и с другой стороны. Они совершенно разные: одна сторона опушена, другая – нет. Сначала пусть малыш определит это на ощупь, а потом увидит волоски в микроскоп. На листе крапивы можно рассмотреть те самые жгучие волоски, которые доставляют так много неприятностей голым детским ножкам и ручкам. Сорвите по листочку от каждого комнатного растения. Каждый по-своему интересен и неповторим. Если на подоконнике растут кактусы, пусть ради науки пожертвуют несколькими колючками.

Очень красивы лепестки цветов. Можно рассмотреть пыльцу. Для этого перенесите ее мягкой кисточкой с цветка на предметное стекло. Если малышу будет интересно, попробуйте зарисовать, как выглядит пыльца разных растений. Некоторые микроскопы снабжены специальным проектором, который проецирует изображение на бумагу. Так его легче будет зарисовать. Рассмотрите кожуру и мякоть всевозможных овощей и фруктов. Чем они похожи и чем различаются? Интересно рассматривать волосы и сравнивать их по цвету и толщине. Окажется, что кошачья шерсть тоньше человеческого волоса, а папин волос толще детских. А подсунутый под микроскоп собственный палец может произвести настоящий фурор. Особенно впечатлит грязь под ногтями. Микробов там, конечно, не увидишь. Но и без них выглядит ужасающе. Сразу может поступить требование постричь ногти.

Не менее интересно посмотреть, из чего состоит домашняя пыль, как выглядит бумага, вата, нитки, клочки кукольных волос и меха мягких игрушек, рыбьи чешуйки и кости, икринки, мед, капельки молока, кристаллики соли, сахара, лимонной кислоты, соды, льда, всевозможные семечки и крупы, кусочки грибов, камушки и ракушки, привезенные с моря, шишки, бумажные деньги (на них можно отыскать разные знаки, которые не видны без увеличения ). Если у вас есть аквариум, соскребите немного налета с его стенок, положите на предметное стекло, сверху накройте покровным стеклом и рассмотрите при среднем увеличении. Поверьте, это потрясающая картинка! Из болотной воды, которую малыш набрал в «экспедиции», тоже получается интереснейший микропрепарат. Хоть и не микробы, но живые, двигающиеся существа. Фантастика! Кроме зоопланктона, можно увидеть и одноклеточные водоросли со жгутиками. Иногда в воду может попасть лягушачья икра, крошечные головастики и личинки водяных насекомых. А потом рассмотрите воду из-под крана. Есть ли там что-то живое и почему?

Вырастите с малышом плесень на хлебе. Для этого положите кусочек хлеба в стеклянную банку с крышкой (если есть специальная чашка Петри, то в нее), смочите водой и поставьте на несколько дней в теплое место (но не на солнце ). Немного выросшей плесени положите в капельку воды на предметное стекло, закройте покровным стеклом, и ваш препарат готов. Можно рассмотреть обычные пекарские дрожжи. Для этого отщипните от брикета маленький кусочек и разведите в капельке воды. А еще можно прорастить пшеничное зернышко и ежедневно наблюдать, какие с ним происходят изменения…

Великие и ужасные

Ну а самые прекрасные объекты для детских исследований – это, бесспорно, насекомые. Где брать образцы для рассматривания, решать вам. Но, думаю, не стоит ловить и убивать насекомых специально. Даже ради науки. Не нужно такой подход делать для малыша нормой. Исключения могут составлять насекомые «вредные»: муха, комар, таракан, колорадский жук. Этих «надоед» всегда можно отыскать с избытком. Очень интересно рассматривать под микроскопом (особенно бинокулярным) муху. Обратите внимание малыша на устройство ее глаза, ножек, крыльев. Посмотрите крыло с обеих сторон. Сверху хорошо видно его строение, а снизу вам представится очень красивая картинка: радужные парчовые переливы. У комара обратите внимание на «кусающее» устройство – хоботок.

Поищите на лугу крыло бабочки. Под микроскопом на нем видна пыльца. Обследуйте паутину. Там всегда можно найти погибших мелких насекомых. Просто поразительно, как сложно устроены такие крошечные, неприметные существа. Прочитайте с малышом книгу Я. Ларри «Необыкновенные приключения Карика и Вали «. Наверное, Карик и Валя видели насекомых почти такими же – огромными и ужасающими.

Изучаем Чиполлино

Микроскоп поможет малышу узнать о том, что все живое состоит из клеток. Под микроскопом можно увидеть не только клетку, но и рассмотреть ее строение. Для этого вместе с ребенком приготовьте простой и наглядный препарат из обычного репчатого лука. Почему лук? У этого растения очень крупные клетки, и они отчетливо видны при сравнительно небольшом увеличении. Итак, разрежьте луковицу на несколько частей и отделите один сочный слой. Отрежьте от него небольшой кусочек, а затем с вогнутой стороны кусочка пинцетом отделите тонкую пленочку. На предметное стекло капните дистиллированной воды, положите в нее пленочку и аккуратно расправьте иглой. Затем добавьте пару капель водного раствора метиленового синего или водного раствора йода.

Делать это нужно для того, чтобы бесцветные клетки окрасились и стали лучше заметны. Если удастся отыскать красно-фиолетовую луковицу, краситель можно не добавлять. Полученную «красоту» накройте сверху покровным стеклом и промокните выступившую жидкость. Попробуйте рассмотреть препарат сначала при маленьком, а затем при большом увеличении. Расскажите малышу, что и растения и животные состоят из крошечных клеточек. Вот они-то и видны в микроскоп, будто маленькие кирпичики. А почему их назвали клетками? Это имя придумал английский ботаник Р.Гук. Рассматривая под микроскопом срез пробки, он заметил, что она состоит «из множества коробочек «. А еще он называл эти «коробочки» камерами и… клетками. Ведь, правда, похоже, что кто-то расчертил луковую пленочку на клеточки.

При большом увеличении хорошо видна клеточная стенка, ядро, вакуоль. Объясните малышу, что клеточная стенка – это перегородка, стеночка между клетками. Она защищает клетку и помогает сохранить нужную форму. Благодаря ядру клетка растет и размножается. А внутри вакуоли находится клеточный сок. Тот самый, который брызжет в разные стороны и вызывает слезы, когда мы режем лук.

Красный? Зеленый?

Спросите малыша, почему овощи и фрукты бывают разных цветов. Он попытается ответить на вопрос, выдумывая фантастические версии. Внимательно выслушайте его предположения, а потом предложите выяснить это наверняка. Для опыта вам понадобится несколько предметных стекол, мякоть всевозможных плодов (арбуз, тертая морковь, помидор, красный и зеленый перец, ягоды рябины и др.), зеленые листья растений. Капните на предметное стекло несколько капель воды, поместите туда немного мякоти спелого помидора и расщепите ее иглой. Накройте покровным стеклом и рассмотрите вместе с малышом под микроскопом.

Вы сможете увидеть внутри клеток особые включения красного цвета – пластиды. Именно они придают спелым овощам и фруктам красный, желтый или оранжевый цвет. Зеленые листья и плоды тоже содержат пластиды, но зеленого цвета. А уже знакомый нам лук или картофель белые потому, что их пластиды бесцветны. Поэкспериментируйте с самыми разными овощами и фруктами, чтобы малыш смог в этом убедиться. А затем расскажите ему, что пластиды одного вида могут превращаться в другой. Вот почему зеленый помидор поспевает и становится красным. А что происходит с зелеными листьями осенью, почему они желтеют и краснеют? Думаю, теперь юный биолог и сам сможет найти ответ на этот вопрос. Ну, разве это не замечательно?

Итак, подведем итог. Микроскоп – штука очень увлекательная. Однажды заболев им, маленький человечек может пронести свою любовь к исследованиям через всю жизнь. И какой бы деятельности не посвятили себя ваши подросшие сын или дочка в будущем, эти детские эксперименты непременно сослужат им хорошую службу. Интересных вам наблюдений и удивительных открытий!


Мир развлечений для наших детишек сегодня просто огромен. Родители стараются обеспечить своего малыша только лучшим....

  • В наше время использование микроскопов как в домашних условиях, так и в учебных заведениях довольно...
  • Классификация микроскопов может производиться на основании различных параметров, например: назначение, способ освещения, строение оптическое системы и так далее. В данной статье будет рассматриваться самая общая классификация в зависимости от величины разрешения микрочастиц , которые можно рассмотреть в данный конкретный микроскоп.

    Итак, все микроскопы мира можно разделить на оптические (световые), электронные, рентгеновские и сканирующие зондовые микроскопы. Наиболее популярными являются оптические микроскопы, которые широко представлены в магазинах оптики. Данные микроскопы позволяют решать основные исследовательские задачи. Другие виды микроскопов относятся уже к специализированным, и используются в основном в лабораториях.

    Рентгеновские микроскопы . Действие таких микроскопов основано на использовании электромагнитного излучения с длиной волны от 0,01 до 1 нм, что позволяет исследовать с их помощью очень малые объекты. Исходя из разрешающей способности рентгеновские микроскопы по их мощности можно позиционировать как нечто среднее межу оптическими и электронными микроскопами (разрешающая способность около 2-20 нм).

    Сканирующие зондовые микроскопы . Такой микроскоп Вы вряд ли приобретете для домашнего использования. Это уже специализированный класс микроскопов, в котором для построения изображения используется специальный зонд для сканирования поверхности. Благодаря такому микроскопу получают трехмерное изображение с очень высоким разрешением (вплоть до атомарного). Благодаря рекордному разрешению (менее 0,1 нм) такие микроскопы позволяют видеть молекулы и атомы, а также воздействовать на них (при этом объекты могут изучаться не только в вакууме, но и в газах и жидкостях).

    Со времен появления микроскопии как совокупности практического использования микроскопов, появилось множество видов и подвидов, применяемых в той или иной научной области. Иногда во всем многобразии неподготовленному новичку бывает достаточно трудно сориентироваться. Как правило, та или иная организация (например, НИИ, лаборатория или медпункт) приобретает микроскоп под конкретные задачи. И специалисты нашей компании подбирают оптимальную модель исходя их требуемых технических характеристик и специфики исследований. Но если вы решили порадовать своего ребенка или себя любимого путешествиями по микромиру, то, прочитав эту статью изобилие приборов уже не будет вас пугать. В современном мире все микроскопы можно разделить на три больших класса:

    • Учебные микроскопы. Их называют еще школьные или детские . Эти микроскопы являются простейшими биологическими приборами, основная задача которых - показать ребенку или новичку основные методы исследования объектов, впервые познакомить человека с прибором.
    • Цифровые микроскопы . Это очень емкий класс микроскопов, включающий в себя множество подвидов. Основная задача цифрового микроскопа- не просто показать объект в увеличенном виде, но и сделать фотографию или снять видеоролик.
    • Лабораторные микроскопы . Главной задачей лабораторного микроскопа являются проведение конкретных исследований в различных областях науки, промышленности, медицине.

    Эти три класса микроскопов плотно переплетены между собой. К примеру, оснастив учебный микроскоп цифровым фото-видео окуляром, мы получим цифровой микроскоп, способный вывести на компьютер с помощью кабеля USB изображение среза листика или насекомого. Кроме того, учебный микроскоп может применяться и для простейших лабораторных биологических исследований. В то же время, лабораторные микроскопы, обладающие большим увеличением, оснащенные цифровой камерой, так же могут превратиться в цифровой.

    Но это только на первый взгляд все кажется таким запутанным. На самом деле все проще простого. Остановимся подробнее на каждом из трех классов микроскопов.

    Учебные микроскопы условно можно разделить на три подвида

    • Микроскоп - игрушка . Такие микроскопы делаются в Китае на заводах, занимающихся производством товаров для маленьких детей. До сих пор ведутся споры- можно ли назвать пластиковый микроскоп с пластиковой оптикой полноценным оптическим прибором. Отличительная особенность таких микроскопов- яркие упаковки, в которых находится множество пластиковых аксессуаров и сам микроскоп оформлен ярко. Как правило, стоят такие микроскопы очень дешево. Но и познакомить ребенка с микромиром они могут на самом примитивном уровне.
    • Микроскопы с нижней подсветкой зеркалом , стеклянной оптикой и металлическим корпусом. Это простейший учебный микроскоп начального уровня. Им до сих пор комплектуются классы биологии некоторых государственных учебных заведений. Корпус микроскопа металлический, оптика стеклянная. Не смотря на сложность, возникающую при попытках поймать свет зеркальцем и направить его в объектив, качество изображения в таких микроскопах очень приличное. Микроскопы с подсветкой зеркалом стоят на уровне дешевых микроскопов-игрушек, но тем не менее отличаются своим качеством и долговечностью.
    • Микроскопы со светодиодными подсветками , стеклянной оптикой и металлическим корпусом. Эти микроскопы являются современными учебными микроскопами, которые могут в полной мере познакомить ребенка с микромиром. Они обладают высоким увеличением, двумя встроенными подсветками, что позволяет смотреть на объект не только в проходящем, но и в отраженном свете (например, на монетки). Микроскопы могут питаться от сети переменного тока или батареек. И являются лучшими представителями в своем классе. Современные школы и лицеи комплектуются именно такими учебными микроскопами- с металлическим корпусом, двумя подсветками, возможностью подключения фото-видео камерами.

    Цифровые микроскопы можно так же разделить на три подвида

    • Биологический микроскоп , оснащенный видеоокуляром. В эти микроскопы при снятом видео-окуляре можно наблюдать глазами как в обычный биологический.
    • Биологический микроскоп, оснащенный дисплеем . Данные микроскопы выводят изображение на дисплей, который крепится к окулярной трубке. При снятом дисплее микроскоп становится обычным биологическим. Дисплей оснащен собственной памятью и разъемами для вывода изображения на ЖК-панель, телевизор или компьютер.

    Микроскоп (греч. μικρός — маленький и σκοπέω — смотрю) — лабораторная оптическая система для получения увеличенных изображений малых объектов с целью рассмотрения, изучения и применения на практике. Совокупность технологий изготовления и практического использования микроскопа называют . С помощью микроскопов определяют форму, размеры, строение и многие другие характеристики микрообъектов, а также микроструктуры макрообъектов.

    История микроскопа . Считается, что голландский мастер очков Ханс Янссен и его сын Захария Янссен изобрели первый микроскоп в 1590, но это было заявление самого Захария Янссена в середине XVII века. Другим претендентом на звание изобретателя микроскопа был Галилео Галилей. Он разработал «occhiolino» («оккиолино»), или составной микроскоп с выпуклой и вогнутой линзами в 1609 г. Галилей представил свой микроскоп публике в Академии деи Линчеи.
    Кристиан Гюйгенс, другой голландец, изобрел простую двулинзовую систему окуляров в конце 1600-х, которая ахроматически регулировалась и, следовательно, стала огромным шагом вперед в истории развития микроскопа. Окуляры Гюйгенса производятся и по сей день, но им не хватает широты поля обзора, а расположение окуляров неудобно для глаз по сравнению с современными широкообзорными окулярами. Антон Ван Левенгук (1632—1723) считается первым, кто сумел привлечь к микроскопу внимание биологов, несмотря на то, что простые увеличительные линзы уже производились с 1500-х годов. Изготовленные вручную, микроскопы Ван Левенгука представляли собой очень небольшие изделия с одной очень сильной линзой. Они были неудобны в использовании, однако позволяли очень детально рассматривать изображения лишь из-за того, что не перенимали недостатков составного микроскопа (несколько линз такого микроскопа удваивали дефекты изображения). Понадобилось около 150 лет развития оптики, чтобы составной микроскоп смог давать такое же качество изображения, как простые микроскопы Левенгука. Немецкие ученые Штефан Хелль в 2006 году Stefan Hell и Мариано Босси Mariano Bossi из Института биофизической химии разработали оптический микроскоп под названием Наноскоп, позволяющий наблюдать объекты размером около 10 нм и получать высококачественные трехмерные 3D изображения.
    Один из первых микроскопов, 1876 год

    Разрешающая способность микроскопов . Степень прониковения в микромир, изучения микромира зависит от возможности рассмотреть величину микрообъектов, от разрешающей способности прибора, определяемой длиной волны используемого в микроскопии излучения (видимое, ультрафиолетовое, рентгеновское излучение). Фундаментальное ограничение заключается в невозможности получить при помощи электромагнитного излучения изображение объекта, меньшего по размерам, чем длина волны этого излучения. «Проникнуть глубже» в микромир возможно при применении более коротковолновых излучений, т.е. излучений с меньшими длинами волн, с более высокой разрешающей способностью микроскопов.

    В зависимости от требуемой величины разрешения рассматриваемых микрочастиц материи, микроскопы разделяются на Оптические; Электронные; Рентгеновские; Лазерные рентгеновские микроскопы.

    Оптическая система микроскопа состоит из основных элементов - объектива и окуляра. Они закреплены в подвижном тубусе, расположенном на металлическом основании, на котором имеется предметный столик. В современном микроскопе практически всегда есть осветительная система (в частности, конденсор с ирисовой диафрагмой), макро- и микро- винты для настройки резкости, система управления положением конденсора. В зависимости от назначения, в специализированных микроскопах могут быть использованы дополнительные устройства и системы.

    Электронный микроскоп отличается возможностью получать сильно увеличенное изображение объектов, используя для их освещения электроны. В отличие от оптического микроскопа, в электронном микроскопе используют потоки электронов и магнитные или электростатические линзы. Некоторые электронные микроскопы позволяют увеличивать изображение в 2 млн. раз, в то время, как максимальное увеличение лучших оптических микроскопов достигает 2000 раз. Как электронные, так и оптические микроскопы имеют ограничения в разрешающей способности в зависимости от длины волн. В электронных микроскопах используются электростатические или электромагнитные линзы для формирования изображения путем управления пучком электронов и концентрации его на отдельных участках изображения подобно тому, как оптический микроскоп использует стеклянные линзы для фокусирования света на (или сквозь) изображении.

    Рентгеновский микроскоп - устройство для исследования микроскопического строения вещества с помощью рентгеновского излучения. Разрешающая способность достигает 100нм, что в 2 раза выше, чем у оптических микроскопов (200нм). Теоретически рентгеновская микроскопия позволяет достичь на 2 порядка лучшего разрешения, чем оптическая (поскольку длина волны рентгеновского излучения меньше на 2 порядка). Однако современный оптический микроскоп - наноскоп имеет разрешение до 3-10нм. Различают рентгеновские микроскопы отражательные и проекционные.

    Лазерный рентгеновский микроскоп - прибор или микроскоп c применением рентгеновских лазерных лучей отличающийся разрешающей способностью, обеспечивающей получение изображений на субатомном, атомном уровне на базе использования генерируемого вынужденного луча, например, (инфракрасного) мощностью 14,2 киловатта с длиной волны 1,61 ангстрема.(Например, в ходе химической реакци в режиме 3D и др.).

    Применение микроскопов:

    • Биологические микроскопы применяются для лабораторных биологических и медицинских исследований прозрачных объектов. Доступны «режимы» светлого и темного поля, фазовый контраст, поляризованный свет.
    • Металлографические микроскопы применяются в научных и промышленных лабораториях для исследования непрозрачных объектов. Возможна работа в отраженном и проходящем свете. Доступны режимы светлого и темного поля, фазовый контраст, поляризованный свет.
    • Стереоскопические микроскопы применяются в лабораториях и на различных производствах для получения увеличенных изображений объектов во время проведения рабочих операций. Возможна работа в отраженном и проходящем свете.
    • Поляризационные микроскопы применяются в научных и исследовательских лабораториях для специализированных исследований в поляризованном свете. Возможна работа в отраженном и проходящем свете.