В синтезе катехоламинов принимает участие. Регуляция синтеза и секреции

Катехоламины – физиологически активные вещества, которые могут быть представлены и как медиаторы, и как гормоны. Они очень важны в управлении и молекулярном взаимодействии между клетками в организме человека и животных. Катехоламины производятся методом синтеза в надпочечниках, точнее, в их мозговом веществе.

Вся высшая деятельность человека, связанная с функционированием и деятельностью нервных клеток, осуществляется с помощью этих веществ, так как нейроны используют их в качестве посредников (нейромедиаторов), передающих нервный импульс. Не только физическая, но и умственная выносливость, зависят от обмена катехоламина в организме. Например, от качества обменных процессов этих веществ зависит не только скорость мышления, но и его качество.

От того, насколько активно синтезируется и используется катехоламин в организме, зависит настроение человека, скорость и качество запоминания, реакция агрессии, эмоции и общий энергетический тонус организма. Также катехоламины запускают процессы окисления и восстановления в организме (углеводов, белков и жиров), при которых освобождается энергия, необходимая для питания нервных клеток.

В достаточно больших количествах катехоламины содержаться у детей. Именно поэтому, они более подвижны, эмоционально насыщенны и обучаемы. Однако, с возрастом их количество значительно снижается, что связано с уменьшением синтеза катехоламинов как в центральной нервной системе, так и в периферической. С этим связано замедление мыслительных процессов, ухудшение памяти и понижение настроения.

Сейчас катехоламины включают в себя четыре вещества, три из которых приходятся нейромедиаторами мозга. Первое вещество является гормоном, но не медиатором и называется — серотонин. Содержится в тромбоцитах. Синтез и хранение этого вещества происходит в клеточных структурах желудочно-кишечного тракта. Именно оттуда он транспортируется в кровь и далее, под его контролем, происходит синтезирование биологически активных веществ.

Если его показатели в крови повышены в 5 – 10 раз, то это может свидетельствовать об образованиях опухолей лёгких, кишечника или желудка. При этом в анализе мочи, будут значительно повышены показатели продуктов распада серотонина. После хирургического вмешательства и устранения опухоли, эти показатели в плазме крови и моче, приходят в норму. Их дальнейшее исследование помогает исключить возможный рецидив или образование метастаз.

Менее возможные причины возрастания концентрации серотонина в крови и моче – острый инфаркт миокарда, рак щитовидной железы, острая кишечная непроходимость и др. Также возможно и снижение концентрации серотонина, что свидетельствует о синдроме Дауна, лейкозе, гиповитаминозе В6 и др.

Дофамин — второй гормон из группы катехоламинов. Нейромедиатор мозга, синтезирующийся в специальных нейронах мозга, которые несут ответственность за регуляцию его основных функций. Он стимулирует выброс крови из сердца, улучшает поток крови, расширяет сосуды и пр. С помощью дофамина повышается содержание глюкозы в крови человека, за счёт того, что он предотвращает её утилизацию, одновременно стимулируя процесс распада гликогена.

Немаловажной является регулятивная функция в образовании гормона роста человека. Если при анализе мочи наблюдается повышенное содержание дофамина, то это может указывать на наличие гормонально-активной опухоли в организме. Если же показатели понижены, то нарушается двигательная функция организма (синдром Паркинсона).

Не менее важным гормоном, является — норадреналин. В организме человека он является и нейромедиатором. Синтезируется клетками надпочечников, окончаниями синоптической нервной системы и клетками ЦНС из дофамина. Его количество в крови увеличивается в состоянии стресса, больших физ. нагрузок, при кровотечениях и пр. ситуациях, требующих немедленного реагирования и адаптации к новым условиям.

Он обладает сосудосуживающим эффектом и главным образом влияет на интенсивность (скорость, объём) потока крови. Очень часто этот гормон связывают с яростью, так как при его выбросе в кровь возникает реакция агрессии и повышается мышечная сила. Лицо агрессивно настроенного человека краснеет именно благодаря выбросу норадреналина.

Адреналин – очень важный нейромедиатор организма. Основной гормон, содержащийся в надпочечниках (их мозговом веществе) и синтезирующийся там же из норадреналина.

Связан с реакцией страха, так как при резком испуге его концентрация резко увеличивается. Вследствие этого, учащается частота сердечного ритма, увеличивается артериальное давление, увеличивается коронарный поток крови, повышается концентрация глюкозы.

Также вызывает сужение сосудов кожи, слизистых и органов брюшной полости. При этом лицо человека может заметно побледнеть. Адреналин повышает выносливость человека, находящегося в состоянии волнения или страха. Это вещество как важный допинг для организма и поэтому, чем больше его количество в надпочечниках, тем человек активнее физически и умственно.

Исследование уровня катехоламинов

В настоящее время, результат исследования на катехоламины, является важным показателем наличия опухолей или других серьёзных заболеваний организма. Для исследования концентрации катехоламинов в организме человека используют два основных метода:

  1. Катехоламины в плазме крови. Данный метод исследования является наименее популярным, так как удаление этих гормонов из крови происходит мгновенно, и точное исследование возможно только при её заборе в момент острых осложнений (например, гипертонический криз). Вследствие чего, на практике осуществить такое исследование крайне сложно.
  2. Анализ мочи на катехоламины. В анализе мочи, исследуют 2, 3 и 4 гормоны в нашем списке, представленном ранее. Как правило, исследуется суточная моча, а не разовая сдача, так как в течение одних суток человек может быть подвержен возникновению стрессовых ситуаций, усталости, жаре, холоду, физ. нагрузкам и т. д., что провоцирует выброс гормонов и способствует получению более подробной информации.В исследование входит не только определение уровня катехоламинов, но и их метаболитов, что значительно повышает точность результатов. Следует серьёзно относиться к данному исследованию и исключить все факторы, искажающие результаты (кофеин, адреналин, физические нагрузки и стресс, этанол, никотин, различные лекарственные препараты, шоколад, бананы, молочные продукты).

На данные результатов исследования способны влиять многие внешние факторы. Поэтому в комплексе с анализами важное место занимают физическое и эмоциональное состояние больного, какие лекарственные средства он принимает и что употребляет в пищу. При устранении нежелательных факторов исследование повторяют, с целью точности диагноза.

Хоть и анализы на концентрацию катехоламинов в организме человека могут помочь в обнаружении опухоли, но показать точное место возникновения и её характер (доброкачественная или злокачественная) они, к сожалению, неспособны. Также они не показывают количество образовавшихся опухолей.

Катехоламины – незаменимые вещества для нашего организма. Благодаря их наличию, мы можем справляться со стрессами, физическими перегрузками, повышать свою физическую, умственную и эмоциональную активность. Их показатели всегда предупредят нас об опасных опухолях или заболеваниях. В ответ необходимо лишь уделять им достаточно внимания и своевременно и ответственно исследовать их концентрацию в организме.

3. Физиологическая роль катехоламинов. Влияние на секрецию

Продукция этих гормонов резко усиливается при возбуждении симпатической части автономной нервной системы. В свою очередь выделение этих гормонов в кровь приводит к развитию эффектов, аналогичных действию стимуляции симпатических нервов. Разница состоит лишь в том, что гормональный эффект является более длительным. К наиболее важным эффектам катехоламинов относятся стимуляция деятельности сердца, вазоконстрикция, торможение перестальтики и секреции кишечника, расширение зрачка, уменьшение потоотделения, усиление процессов катаболизма и образования энергии.

Адреналин имеет большое сродство к b-адренорецепторам, локализующимся в миокарде, вследствие чего вызывает положительные инотропный и хронотропный эффекты в сердце. С другой стороны, норадреналин имеет более высокое сродство к сосудистым a-адренорецепторам. Поэтому, вызываемые катехоламинами вазоконстрикция и увеличение периферического сосудистого сопротивления, в большей степени обусловлены действием норадреналина.

При стрессе содержание катехоламинов повышается в 4 – 8 раз. Развивается тахикардия, обильное потоотделение, тремор, головная боль, повышенное чувство тревоги. При опухоли мозгового слоя надпочечников ко всем этим симптомам присоединяется артериальная гипертензия. Поскольку адреналин подавляет секрецию инсулина, активирует гликогенолиз и липолиз, у таких больных наблюдается гипергликемия, глюкозурия, а так же быстрое снижение массы тела.

Снижение уровня адреналина наблюдается при недоразвитии мозгового вещества надпочечников, олигофрении, депрессии, миопатиях и мигрени.

Основными конечными продуктами обмена катехоламинов являются ванилил-миндальная кислота и адренохром. Суточное выделение ванилил-миндальной кислоты в норме составляет от 2,5 до 38 мкмоль/сут., или 0,5 – 7 мг/сут. Экскреция с мочой адреналина, норадреналина, дофамина и основных продуктов разрушения катехоламинов при различных патологиях может изменяться в сторону уменьшения или увеличения. Так выделение их с мочой увеличивается при феохромацитоме (опухоли мозгового вещества надпочечников). Это происходит по причине того, что опухоль усиленно продуцирует адреналин, норадреналин, ванилил-миндальную кислоту. Симпатоганглиобластома так же активно вырабатывает норадреналин, дофамин, гомованилиновую кислоту. Кроме того, усиленная выработка и выведение этих веществ происходит вследствие реакции симпатоадреналовой системы на боль и коллапс в острый период инфаркта миокарда, при приступах стенокардии, обострении язвенной болезни желудка и двенадцатиперстной кишки. В результате нарушения катаболизма катехоламинов усиливается их экскреция с мочой при гепатитах и циррозе печени. Из-за нарушения в звене управления активностью симпатоадреналовой системы повышается уровень катехоламинов при гипоталамическом или дианцефальном синдроме, гипертонической болезни в период кризов. Курение, физические нагрузки и эмоциональный стресс так же стимулируют высвобождение катехоламинов в кровь из мозгового вещества надпочечников.

При некоторых заболеваниях уровень экскреции катехоламинов с мочой снижается в результате того, что деятельность хромаффинных клеток мозгового вещества надпочечников подавляется под действием интоксикации. Это происходит при аддисоновой болезни, коллагенозах, остром лейкозе, а так же остро протекающих инфекционных заболеваниях (различной этиологии токсических диспепсиях и др.)


Таким образом, функции катехоламинов разнообразны. Они вызывают мобилизацию защитных сил организма в условиях стрессового воздействия посредством активации системы гипоталамус – гипофиз – кора надпочечников; улучшают кровоснабжение сердечной и скелетной мышц, повышают их работоспособность. Кроме того, катехоламины содействуют утилизации запасов углеводов за счёт стимуляции процессов распада гликогена, активируют липолиз, усиливают окисление метаболитов, участвуют в механизмах осуществления нервной проводимости, стимулируют функциональную деятельность органов и систем. Катехоламины имеют неоценимое значение в регуляции деятельности организма, процессах метаболизма и обеспечении гемостаза. В настоящее время в кардиологической практике широко используются и их синтетические аналоги: допексамина гидрохлорид, структурно близкий к допамину и изопротеренол, избирательно активирующий b-адренорецепторы миокарда и сосудов.


Список использованной литературы

1. Анатомия человека. В двух томах. Т.2/Авт.: М.Р.Сапин, В.Я. Бочаров, Д.Б. Никитюк и др. /Под ред.М.Р. Сапина. – Изд 5-е, перераб. И доп. – М.: Медицина. – 2001. – 64 с.: ил.

2. Биологическая химия. Учеб. для хим., биол. и мед. спец. вузов / Д.Г. Кнорре, С.Д. Мызина, 3-е изд., испр. М: Высш. шк. 2002. – 479 с.: ил. .

3. Камышников В.С. О чём говорят медицинские анализы: Справ. пособие. – Мн.: Беларусская навука, 1998. – 189 с.

4. Физиология человека: Учебник/ Под ред. В.М. Покровского, Г.Ф. Коротько. – 2-е изд. перераб и доп. – М.: Медицина, 2003. – 656 с: ил. – (Учеб. лит. для студ. мед. вузов).



Гензеляйт в 1932 г. вывели уравнения реакций синтеза мочевины, которые представлены в виде цикла, получившего в литературе название орнитинового цикла мочевинообразования Кребса. Следует указать, что в биохимии это была первая циклическая система метаболизма, описание которой почти на 5 лет опеределило открытие Г. Кребсом другого метаболического процесса – цикла трикарбоновых кислот. Дальнейшие...

Названные общим адаптационным синдромом (Г.Селье). В развитии адаптационного синдрома основную роль играет гипофизарно-надпочечниковая система. Поджелудочная железа Поджелудочная железа относится к железам со смешанной функцией. Эндокринная функция осуществляется за счет продукции гормонов панкреатическими островками (островками Лангерганса). Островки расположены преимущественно в хвостовой...

Некоторые гормоны человека и связь эндокринной системы с нервной системой представлены на рис. 13.2. Под прямым контролем нервной системы находятся мозговое вещество надпочечников и гипоталамус; другие эндокринные железы связаны с нервной системой опосредованно, через гормоны гипоталамуса и гипо­ физа. В клетках гипоталамуса синтезируются особые пептиды - либерины (рили- зинг-гормоны). В ответ на возбуждение определенных центров мозга либерины освобождаются из аксонов нервных клеток гипоталамуса, оканчивающихся в ги­ пофизе, и стимулируют синтез и выделение тропных гормонов клетками гипофи­ за. Наряду с либеринами, в гипоталамусе вырабатываются статины, ингибирую­ щие синтез и секрецию гормонов гипофиза.

Центральная нервная система

Н ер в н ы е с в язи

Н ер в н ы е св язи ___

Гипоталамус

Антидиуре-

тический

Окситоцип

Мышцы матки,

молочных желез

Меланоцит-

стимулирую-

Меланоциты

щий гормон

Пролактии

Молочные железы

Соматотропин

Лютсинизи-

Фолликуло-

Кортикотропин

Тиротропин

стимулирующий

Мозговое

Щитовидная

Семенники

вещество

надпочечников

надпочечников

АДРЕНАЛИН

КОРТИЗОЛ

ТИРОКСИН ЭСТРОГЕНЫ

АНДРОГЕНЫ

Рис. 13.2. Связи эндокринной и нервной систем. Сплошные стрелки обозначают синтез и секрецию гормона, пунктирные - влияние гормона на органы-мишени

Классификация гормонов по биологическим функциям в известной степени условна, поскольку многие гормоны полифункциональны. Например, адреналин и норадреналин регулируют не только обмен углеводов и жиров, но и частоту сер­ дечных сокращений, сокращение гладких мышц, кровяное давление. В частности, по этой причине многие гормоны, особенно паракринные, не удается классифи­ цировать по биологическим функциям.

Изменения концентрации гормонов в крови

Концентрация гормонов в крови низкая, порядка IO6-IO JJ моль/л. Время полужизни в крови измеряется минутами, для некоторых гормонов - десятками минут, реже - часами. Увеличение концентрации гормона в крови при действии соот­ ветствующего стимула зависит от увеличения скорости синтеза гормона или ско­ рости секреции уже имеющегося в эндокринной клетке гормона.

Стероидные гормоны представляют собой липофильные вещества, легко про­ никающие через клеточные мембраны. Поэтому они не накапливаются в клетках, и повышение их концентрации в крови определяется увеличением скорости син­ теза.

Пептидные гормоны выделяются в кровь при участии специальных механиз­ мов секреции. Эти гормоны после их синтеза включаются в секреторные грану­ лы - мембранные пузырьки, образующиеся в пластинчатом комплексе; гормон ос­ вобождается в кровь путем слияния гранулы с плазматической мембраной клетки (экзоцитоз). Синтез гормонов происходит быстро (например, молекула проинсу­ лина синтезируется за 1-2 мин), в то время как образование и созревание секре­ торных гранул требуют большего времени - 1-2 ч. Запасание гормона в секретор­ ных гранулах обеспечивает быструю реакцию организма на действие стимула: сти­ мул ускоряет слияние гранул с мембраной и освобождение запасенного гормона в кровь.

Синтез стероидных гормонов

Строение и синтез многих гормонов описаны в предыдущих разделах. Стероидные гормоны представляют собой группу соединений, родственных по происхожде­ нию и структуре: все они образуются из холестерина. Промежуточными продук­ тами при синтезе стероидных гормонов служат прегненолон и прогестерон (рис. 13.3). Они образуются во всех органах, синтезирующих любые стероидные гор­ моны. Далее пути превращения расходятся: в коре надпочечников образуются кор­ тизол (глюкокортикостероид) и альдостерон (минералокортикостероид) (С,-сте- роиды), в семенниках - мужские половые гормоны (С19-стероиды), в яичниках женские половые гормоны (С18-стероиды). За большинством стрелок на схеме скрывается не одна, а от двух до четырех реакций. Кроме того, возможны альтер­ нативные пути синтеза некоторых гормонов. В целом пути синтеза стероидных гормонов образуют довольно сложную сетку реакций. Многие промежуточные продукты этих путей также обладают некоторой гормональной активностью. Од­ нако основными стероидными гормонам служат кортизол (регуляция обмена угле­ водов и аминокислот), альдостерон (регуляция водно-солевого обмена), тестосте­ рон, эстрадиол и прогестерон (регуляция репродуктивных функций).

В результате инактивации и катаболизма стероидных гормонов образуется зна­ чительное количество стероидов, содержащих кетогруппу в положении 17 (17-ке- тостероиды). Эти вещества выводятся через почки. Суточная экскреция 17-кетос- тероидов у взрослой женщины составляет 5-15 мг, у мужчин - 10-25 мг. Опреде­ ление 17-кетостероидов в моче используется для диагностики: их выделение увеличивается при болезнях, сопровождающихся гиперпродукцией стероидных гормонов, и уменьшается при гипопродукции.

Прогестерон (C21) Альдостерон (C21)

Рис. 13.3. Пути синтеза стероидных гормонов:

1,2 - в коре надпочечников, семенниках и яичниках;3, 4 - в коре надпочечников; 5 - в семенниках и яичниках;6 - в яичниках

Паракринные гормоны

Цитокины

Цитокины - это сигнальные молекулы паракринного и аутокринного действия; в крови в физиологически активной концентрации практически не бывают (исклю­ чение - интерлейкин-1). Известны десятки разных цитокинов. К ним относятся интерлейкины (лимфокины и монокины), интерфероны, пептидные факторы рос­ та, колониестимулирующие факторы. Цитокины представляют собой гликопротеи­ ны, содержащие 100-200 аминокислотных остатков. Большинство цитокинов обра­ зуется и действует во многих типах клеток и реагирует на разные стимулы, включая механическое повреждение, вирусную инфекцию, метаболические нарушения и др. Исключение составляют интерлейкины (ИЛ-1 а и ИЛ-1Р) - их синтез регулирует­ ся специфическими сигналами и в небольшом количестве типов клеток.

Цитокины действуют на клетки через специфические мембранные рецепторы и протеинкиназные каскады, в результате активируются факторы транскрипции - энхансеры или сайленсеры, белки, которые транспортируются в ядро клетки, на­ ходят специфическую последовательность ДНК в промоторе гена, являющегося мишенью данного цитокина, и активируют или подавляют транскрипцию гена.

Цитокины учас твуют в регуляции пролиферации, дифференцировки, хемотак­ сиса, секреции, апоптоза, воспалительной реакции. Трансформирующий фактор роста (ТФР-р) стимулирует синтез и секрецию компонентов межклеточного мат­ рикса, рост и пролиферацию клеток, синтез других цитокинов.

Цитокины имеют перекрывающуюся, но все же разную биологическую актив­ ность. Клетки разных типов, или разной степени дифференцированности, или находящиеся в разном функциональном состоянии могут по-разному реагировать на один и тот же цитокин.

Эйкозаноиды

Арахидоновая кислота, или эйкозатетраеновая, 20:4 (5, 8, 11, 14), дает начало боль­ шой группе паракринных гормонов - эйкозаноидов. Арахидоновая кислота, по­ ступающая с пищей или образующаяся из линолевой кислоты, включается в состав мембранных фосфолипидов и может освобождаться из них в результате действия фосфолипазы А.. Далее в цитозоле образуются эйкозаноиды (рис. 13.4). Различают три группы эйкозаноидов: простагландины (PG), тромбоксаны (TX), лейкотриены (LT). Эйкозаноиды образуются в очень малых количествах, и имеют, как правило, короткое время жизни - измеряемое минутами или даже секундами.

Лейкотриены

Рис. 13.4. Синтез и строение некоторых эйкозаноидов:

1 - фосфолипаза A2;2 - циклооксигеназа

В разных тканях и разных ситуациях образуются неодинаковые эйкозаноиды. Функции эйкозаноидов многообразны. Они вызывают сокращение гладких мышц и сужение кровеносных сосудов (PGF2Ct, синтезируется почти во всех органах) или, наоборот, - расслабление гладких мышц и расширение сосудов (PGE2, син­ тезируется тоже в большинстве органов). PGI2 синтезируется в основном в эндо­ телии сосудов, подавляет агрегацию тромбоцитов, расширяет сосуды. Тромбоксан TXA2 синтезируется в основном в тромбоцитах и действует тоже на тромбоциты - стимулирует их агрегацию (аутокринный механизм) в области повреждения сосу­ да (см. гл. 21). Он же, тромбоксан TXA2, сужает сосуды и бронхи, действуя на глад­ комышечные клетки (паракринный механизм).

Эйкозаноиды действуют на клетки-мишени через специфические мембранные рецепторы. Соединение эйкозаноида с рецептором включает механизм образова­ ния второго (внутриклеточного) вестника сигнала; им могут быть цАМФ, цГМФ, инозитолтрисфосфат, ионы Ca2+. Эйкозаноиды, наряду с другими факторами (гис­ тамин, интерлейкин-1, тромбин и др.), участвуют в развитии воспалительной ре­ акции.

Воспаление - естественная реакция на повреждение тканей, начальное звено заживления. Однако иногда воспаление бывает чрезмерным или слишком продол­ жительным, и тогда оно само становится патологическим процессом, болезнью, и требует лечения. Для лечения таких состояний применяют ингибиторы синтеза эйкозаноидов. Кортизол и его синтетические аналоги (дексаметазон и др.) инду­ цируют синтез белков липокортинов, которые ингибируют фосфолипазу A2 (см. рис. 13.4). Аспирин (нестероидное противовоспалительное средство) ацетилирует и инактивирует циклооксигеназу (рис. 13.6).

Рис. 13.6. Инактивация циклооксигеназы аспирином

Основные гормоноидные катехоламины (адреналин и норадреналин) в значительной степени продуцируются хромаффинной тканью животного организма (название этой специализированной ткани обусловлено окрашиванием ее солями хрома в буро-коричневый цвет). Из хромаффинных клеток состоят мозговой слой надпочечников, параганглии, расположенные возле симпатических узлов, и цепочки особых образований около брюшной аорты и в районе отхождения от нее нижней брыжеечной артерии.

Другим важным местом образования этих катехоламинов являются органные синапсы симпатической нервной системы и некоторых отделов мозга. Дофамин — катехоламиновый гормоноид гипоталамуса (лактостатин).

В 1939 г. Блашко предположил, что исходные субстраты биосинтеза катехоламинов — фенилаланин или тирозин. В соответствии с гипотезой они превращаются сначала в диоксифенилаланин (ДОФА), затем ДОФА — в дофамин, из дофамина синтезируется норадреналин, а из него — адреналин. Впоследствии гипотеза была полностью подтверждена экспериментально. Были выявлены также ферменты, принимающие участие в биосинтезе катехоламинов:


Как показано выше, фенилаланин, окисляясь в 4-м положении бензольного кольца, может легко превращаться в тирозин (оксифенилаланин). Образовавшийся из фенилаланина или предсуществующий в клетке тирозин подвергается в растворимой части цитоплазмы гидроксилированию у 3-го углеродного атома кольца с образованием ДОФА. Эта стадия биосинтеза является узким (лимитирующим) звеном процесса и контролируется специальным ферментом тирозингидроксилазой в присутствии НАДФН, О2 и тетрагидроптеридина в качестве кофактора. Тирозингидроксилаза активируется ионами Fe2+ и сульфатом аммония. Следующая стадия образования катехоламинов — декарбоксилирование ДОФА, в результате которого образуется диоксифенилаланинамин (дофамин).

Данный этап контролируется цитоплазматическим ферментом ДОФА-декарбоксилазой, действующим, по-видимому, в присутствии кофактора пиридоксаль-5"-фосфата. Синтезированный в растворимой части цитоплазмы дофамин переходит далее в секреторные гранулы хромаффинных или симпатэргических клеток, где присоединяет энзиматически к боковой цепи в в-положении гидроксильную группу, превращаясь в норадреналин.

Превращение дофамина в норадреналин происходит в присутствии кислорода воздуха и аскорбиновой кислоты под действием фермента дофамин-в-гидроксилазы (фенилэтиламин-в-оксидаза), активируемого Си2+. Этот фермент обладает широкими пределами субстратной специфичности и способен гидроксилировать ряд биогенных аминов. Если биосинтез норадреналина осуществляется в специальных норадреналиновых гранулах, то процесс останавливается на данной стадии, и образовавшийся гормон может секретироваться.

Однако норадреналин может также транспортироваться в особые адреналиновые гранулы, где превращается в адреналин. Процесс превращения норадреналина в адреналин сводится к замещению атома водорода аминогруппы метильным радикалом и осуществляется с помощью фермента фенилэтаноламин-N-метилтрансферазы. Этот фермент содержится преимущественно в особых адреналиновых гранулах катехоламинпродуцирующих клеток. Для осуществления процесса метилирования норадреналина необходимы также аминокислота метионин в качестве донора метильного радикала и АТФ в качестве активатора его транспорта.

При этом вначале АТФ в присутствии ионов Mg2+ взаимодействует с метионином, образуя активированную форму аминокислоты S-аденозилметионин, после чего метальный радикал переносится N-метилтрансферазой с молекулы S-аденозилметионина на молекулу норадреналина. Таким образом, интенсивность образования адреналина зависит, с одной стороны, от уровня биосинтеза норадреналина, с другой — от запасов метильных групп метионина. Система, обеспечивающая метилирование норадреналина, а следовательно, и интенсивность биосинтеза адреналина, представлена по-разному в неодинаковых катехоламинпродуцирующих клетках.

Так, симпатэргические нервные клетки имеют низкий уровень активности метилирующей системы и образуют преимущественно норадреналин главный симпатический медиатор (Эйлер, 1956). В качестве нервного медиатора некоторых клеток головного мозга может выступать также дофамин. Вместе с тем надпочечники у многих видов имеют большое количество клеток, которые содержат адреналиновые гранулы, богатые метилирующей системой. Вследствие этого надпочечники образуют большие количества адреналина, служащего у ряда животных главным гормоноидом желез.

Так, в надпочечниках человека адреналин составляет в среднем 83% всех катехоламинов, в надпочечниках кроликов и морских свинок — более 95%, коровы — 80%. У кошек отмечено равное количество адреналина и норадреналина в железе, а у китов и домашних птиц значительно преобладает норадреналин, достигая 80% всех катехоламинов. Величины соотношения адреналина и норадреналина в хромаффинных клетках могут иметь существенное физиологическое значение, так как их биологические эффекты в значительной степени различны.

Биосинтез катехоламинов в мозговом слое надпочечников непосредственно регулируется нервными импульсами, поступающими по чревному нерву (Чебоксаров, 1910). Можно думать, что нервная регуляция биосинтетических процессов осуществляется главным образом на тирозингидроксилазной стадии (лимитирующее звено биосинтеза), а также на этапах декарбоксилирования дофамина и метилирования норадреналина.

В регуляции биосинтетических процесссов принимают определенное участие кортикостероиды, инсулин. Сами катехоламины угнетают активность тирозингидроксилазы и тем самым участвуют в саморегуляции биосинтетических процессов.

Термин «катехоламины» относится к веществам, которые содержат катехол (орто- дигидроксибензол) и цепь с аминогруппой - катехоловое ядро. Эпинефрин (адреналин) синтезируется в мозговом веществе надпо­чечников и высвобождается в системный кровоток. Норэпинефрин (норадреналин) образуется также в периферических симпатических нервах. Допамин, предшественник норэпинефрина, обнаруженный в мозговом веществе и периферических симпа­тических нервах, действует напрямую как нейромедиатор в ЦНС.

Катехоламины изменяют сердечно-сосудистые и метаболические показатели: уве­личивают частоту сердечных сокращений, артериальное давление, сократимость миокарда и проводимость в нем.

Адренорецепторы

Специфические рецепторы опосредуют биологическое действие. Три типа адренорецепторов и их рецепторные подтипы объясняют различные физиологические реакции на экзогенные и эндогенные катехоламины.

1-Адренорецепторы - постсинаптические рецепторы, опосредующие сокращение гладкой мускулатуры, их стимуляция вызывает вазоконстрикцию и увеличение давления.

2-Адренорецепторы располагаются на пресинаптических симпатических нервных окончаниях, угнетают высвобождение норэпинефрина, стимуляция вызывает угнетение центральной симпатической импульсации и снижает давление.

Существует три основных подтипа?-адренорецепторов.

1-адренорецептор опосредует действие на сердце и в большей степени реа­гирует на изопротеренол, чем на адреналин или норадреналин, стимуляция?-адренорецепторов вызывает положительный инотропный эффект, хронотропный эффект на сердце, увеличение секреции ренина в почках и липолиз в адипоцитах.

2-адренорецептор опосредует расслабление мышц бронхов, сосу­дов и матки, стимуляция вызывает брокходилатацию, вазодилатацию в скелетных мышцах, гликогенолиз и увеличение освобождения норадреналина из окончаний симпатических нервов.

3-адренорецепторы регулируют расход энергии и липолиз.

D1-рецепторы дофамина располагаются в головном мозге, коронарных сосудах, стимуляция вызывает вазодилатацию данного сосудистого бассейна.

D2-рецепторы дофамина (пресинаптические) локализуются в окончаниях сим­патических нервов, симпатических ганглиях и головном мозге, стимуляция угнетает высвобождение норэпинефрина, передачу импульсов в ганглиях и высво­бождение пролактина.

Большинство клеток имеют адренергические рецепторы. Разработка селективных адреномиметиков и адреноблокаторов позволила развить фармакотерапию различных заболеваний. Например, ?-адреноблокаторы (например, атенолол и метопролол) служат стандартными препаратами для лечения , гипертензии и . Введение?-адреномиметиков (тербуталина и сальбутамола) вызывает расслабление гладкой мускулатуры бронхов, эти препараты часто назначаются для ингаляции при лечении астмы.

Синтез катехоламинов

Эти гормоны синтезируются из тирозина путем гидроксилирования и декарбоксилирования. Тирозин поступает из потребляемой пищи или синтези­руется из фенилаланина в печени и поступает в нейроны, хромаффинные клетки благодаря активному транспорту. Он превращается в 3,4-дигидроксифенилаланин (дофа) под действием тирозин гидроксилазы, это скорость-лимитирующий этап в синтезе катехоламинов. Увеличение внутриклеточной концентрации катехолов ока­зывает подавляющее действие на активность тирозин гидроксилазы; поскольку кате­холамины высвобождаются из секреторных гранул в ответ на стимул, катехоламины в цитоплазме истощаются, устраняется их угнетающее влияние на тирозин гидроксилазу. Транскрипция тирозин гидроксилазы стимулируется глюкокортикоидами, цАМФ-зависимой протеинкиназой, кальций/фосфолипидзависимой протеинкиназой и кальций/кальмодулинзависимой протеинкиназой. а-Метил-паратирозин (метирозин) служит ингибитором тирозин гидриксилазы, его возможно применять для лече­ния пациентов с катехолсекретирующими опухолями.

Декарбоксилаза ароматических аминокислот (ДААК) катализирует декарбоксилирование дофа с образованием допамина, который активно транс­портируется в гранулы для гидроксилирования в норадреналинин медьсодержащим ферментом допамин-гидроксилазой. Аскорбиновая кислота служит кофактором и донором водорода. Фермент структурно схож с тирозин гидроксилазой и может иметь общие транскрипционные регуляторные элементы, оба фермента стимулиру­ются глюкокортикоидами и цАМФ-зависимыми киназами. Эти реакции происходят в синаптических пузырьках (везикулах, гранулах) адренергических нейронов ЦНС, периферической нервной системы, хромаффинных клетках. Основные компоненты везикул - допамин, ?-гидроксилаза, аскор­биновая кислота, хромогранин А и аденозина трифосфата (АТФ). В мозговом веществе норэпинефрин высобождается в цитоплазму, где цитолитический фермент фенилэтаноламин-металтрансфераза превращается его в эпинефрин, затем транспортируемый в другие запасающие везикулы. Реакция метилирования регули­руется глюкокортикоидами, в высокой концентрации присутствующими в мозговом веществе, с помощью кортикомедуллярной портальной системы. Таким образом, катехолсекретирующие опухоли, секретирующие преимущественно эпинефрин, располагаются в мозговом веществе. В нормальном мозгового вещества примерно 80% высвобождающихся катехолами­нов представлено адреналином.

Депонирование и секреция катехоламинов

Катехоламины обнаруживают в мозговом веществе, органах, иннер­вируемых симпатическими нервами. Катехоламины запасаются в гранулах, также содержащих АТФ, нейропептиды [например, адреномедуллин, адренокортикотропин (АКТГ), вазоактивный интести­нальный пептид], кальций, магний и хромогранин. Поглощение в запасающие гранулы облегчается активным транспортом с помощью транспортеров моноаминов везикул (ТМАВ). АТФ-зависимый насос ТМАВ поддерживает значительный электриче­ский градиент. Для транспортировки каждого моноамина АТФ гидролизуется, а два иона водорода транспортируются из везикулы в цитозоль.

Стрессовые стимулы (например, инфаркт миокарда, анестезия, гипогликемия) запу­скают секрецию катехоламинов. Ацетилхолин из преганглионарных симпатических воликон стимулирует никотиновые холинергические рецепторы и вызывает деполяризацию хромаффинных клеток. Деполяризация запускает активацию потенциалзависимых кальциевых каналов, что приводит к экзоцитозу содержимого секреторных гранул. Кальцийзависимый рецептор участвует в процессе экзоцитоза. Во время экзоцитоза все содержимое гранулы высвобождается вне клеток. Норадреналин регулирует собственное высвобождение путем активации а-адренорецепторов на пресинаптической мембране. Стимуляция пресинаптических а2-адренорецепторов угнетает высвобождение норэпинефрина (такой механизм действия некоторых анти- гипертензивных препаратов, например, клонидина и гуанфацина).

Катехоламины - самые короткоживушие сигнальные молекулы, исхо­дный период полувыведения катехоламинов из крови составляет от 10 до 100 с. Примерно половина катехоламинов циркулирует в плазме в непрочно связанном с альбумином виде. Таким образом, концентрация катехоламинов колеблется в широких пределах.

Метаболизм катехоламинов

Катехоламины удаляются из крови как путем обратного захвата окончания­ми симпатических нервов, так и путем метаболизма с помощью двух ферментных путей с последующей конъюгацией и экскрецией почками. Большая часть катехоламинов метаболизируется в тех же клетках, где они синтези­руются. Почти 90% катехоламинов, высвобождаемых синапсами, подверга­ется поглощению нервными окончаниями (поглощение-1). Поглощение-1 может блокироваться кокаином, трициклическими антидепрессантами и фенотиазинами. Экстраневральные ткани также поглощают катехоламины, что обозначают как поглощение-2. Подавляющая часть катехоламинов метаболизируется (КОМТ) катехол-О-метилтрансферазой.

Хотя КОМТ обнаруживается преимущественно за пределами нерв­ной ткани, О-метилирование в мозговом веществе служит преоб­ладающим источником метанефрина (КОМТ превращает эпинефрин в метанефрин) и основным источником норметанефрина (КОМТ превращает норэпинефрин в норметанефрин) путем метилирования 3-гидроксильной группы. Для этого про­цесса необходим аденозилметионин, используемый как донор метильной группы, и кальций. Метанефрин и норметанефрин окисляется МАО до ванилилминдальной кислоты (ВМК) путем окислительного дезаминирования. МАО также может окислять адреналин и норадреналин до 3,4-дигицроксиминдальной кислоты, которая затем превращается КОМТ в ВМК. МАО локализуется на внешней мембране митохондрий. В запасающих пузырьках норадреналин защищен от метаболизма МАО. МАО и КОМТ метаболизируют допамин до гомованилиновой кислоты.

Статью подготовил и отредактировал: врач-хирург